These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 23837845)
1. Variant discovery in targeted resequencing using whole genome amplified DNA. Indap AR; Cole R; Runge CL; Marth GT; Olivier M BMC Genomics; 2013 Jul; 14():468. PubMed ID: 23837845 [TBL] [Abstract][Full Text] [Related]
2. Massively parallel sequencing of micro-manipulated cells targeting a comprehensive panel of disease-causing genes: A comparative evaluation of upstream whole-genome amplification methods. Deleye L; Gansemans Y; De Coninck D; Van Nieuwerburgh F; Deforce D PLoS One; 2018; 13(4):e0196334. PubMed ID: 29698522 [TBL] [Abstract][Full Text] [Related]
3. Comparison of solution-based exome capture methods for next generation sequencing. Sulonen AM; Ellonen P; Almusa H; Lepistö M; Eldfors S; Hannula S; Miettinen T; Tyynismaa H; Salo P; Heckman C; Joensuu H; Raivio T; Suomalainen A; Saarela J Genome Biol; 2011 Sep; 12(9):R94. PubMed ID: 21955854 [TBL] [Abstract][Full Text] [Related]
4. Assessing the utility of whole genome amplified DNA for next-generation molecular ecology. Blair C; Campbell CR; Yoder AD Mol Ecol Resour; 2015 Sep; 15(5):1079-90. PubMed ID: 25619406 [TBL] [Abstract][Full Text] [Related]
5. High fidelity of whole-genome amplified DNA on high-density single nucleotide polymorphism arrays. Xing J; Watkins WS; Zhang Y; Witherspoon DJ; Jorde LB Genomics; 2008 Dec; 92(6):452-6. PubMed ID: 18786630 [TBL] [Abstract][Full Text] [Related]
6. Comparison of whole genome amplification techniques for human single cell exome sequencing. Borgström E; Paterlini M; Mold JE; Frisen J; Lundeberg J PLoS One; 2017; 12(2):e0171566. PubMed ID: 28207771 [TBL] [Abstract][Full Text] [Related]
7. Parallel WGA and WTA for Comparative Genome and Transcriptome NGS Analysis Using Tiny Cell Numbers. Korfhage C; Fricke E; Meier A Curr Protoc Mol Biol; 2015 Jul; 111():7.19.1-7.19.18. PubMed ID: 26131854 [TBL] [Abstract][Full Text] [Related]
8. Accurate variant detection across non-amplified and whole genome amplified DNA using targeted next generation sequencing. ElSharawy A; Warner J; Olson J; Forster M; Schilhabel MB; Link DR; Rose-John S; Schreiber S; Rosenstiel P; Brayer J; Franke A BMC Genomics; 2012 Sep; 13():500. PubMed ID: 22994565 [TBL] [Abstract][Full Text] [Related]
9. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing. Hollegaard MV; Grauholm J; Nielsen R; Grove J; Mandrup S; Hougaard DM Mol Genet Metab; 2013; 110(1-2):65-72. PubMed ID: 23830478 [TBL] [Abstract][Full Text] [Related]
10. Assessing the utility of whole-genome amplified serum DNA for array-based high throughput genotyping. Bucasas KL; Pandya GA; Pradhan S; Fleischmann RD; Peterson SN; Belmont JW BMC Genet; 2009 Dec; 10():85. PubMed ID: 20021669 [TBL] [Abstract][Full Text] [Related]
11. Genomic Sequence Variation Analysis by Resequencing. Martin J; Schackwitz W; Lipzen A Methods Mol Biol; 2018; 1775():229-239. PubMed ID: 29876821 [TBL] [Abstract][Full Text] [Related]
12. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. Zhan B; Fadista J; Thomsen B; Hedegaard J; Panitz F; Bendixen C BMC Genomics; 2011 Nov; 12():557. PubMed ID: 22082336 [TBL] [Abstract][Full Text] [Related]
13. A practical guide to filtering and prioritizing genetic variants. Jalali Sefid Dashti M; Gamieldien J Biotechniques; 2017 Jan; 62(1):18-30. PubMed ID: 28118812 [TBL] [Abstract][Full Text] [Related]
14. High-resolution melting curve analysis of genomic and whole-genome amplified DNA. Cho MH; Ciulla D; Klanderman BJ; Raby BA; Silverman EK Clin Chem; 2008 Dec; 54(12):2055-8. PubMed ID: 19042988 [TBL] [Abstract][Full Text] [Related]
15. Assessing myBaits Target Capture Sequencing Methodology Using Short-Read Sequencing for Variant Detection in Oat Genomics and Breeding. Mahmood K; Sarup P; Oertelt L; Jahoor A; Orabi J Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927635 [TBL] [Abstract][Full Text] [Related]
16. Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates. Leung K; Klaus A; Lin BK; Laks E; Biele J; Lai D; Bashashati A; Huang YF; Aniba R; Moksa M; Steif A; Mes-Masson AM; Hirst M; Shah SP; Aparicio S; Hansen CL Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8484-9. PubMed ID: 27412862 [TBL] [Abstract][Full Text] [Related]
17. Summarizing specific profiles in Illumina sequencing from whole-genome amplified DNA. Tsai IJ; Hunt M; Holroyd N; Huckvale T; Berriman M; Kikuchi T DNA Res; 2014 Jun; 21(3):243-54. PubMed ID: 24353264 [TBL] [Abstract][Full Text] [Related]
18. The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. Dapprich J; Ferriola D; Mackiewicz K; Clark PM; Rappaport E; D'Arcy M; Sasson A; Gai X; Schug J; Kaestner KH; Monos D BMC Genomics; 2016 Jul; 17():486. PubMed ID: 27393338 [TBL] [Abstract][Full Text] [Related]
19. Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance. Bergen AW; Qi Y; Haque KA; Welch RA; Chanock SJ BMC Biotechnol; 2005 Sep; 5():24. PubMed ID: 16168060 [TBL] [Abstract][Full Text] [Related]