BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23838039)

  • 1. Mechanisms of photosynthetic inactivation on growth suppression of Microcystis aeruginosa under UV-C stress.
    Tao Y; Mao X; Hu J; Mok HO; Wang L; Au DW; Zhu J; Zhang X
    Chemosphere; 2013 Oct; 93(4):637-44. PubMed ID: 23838039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa.
    Ou H; Gao N; Deng Y; Qiao J; Wang H
    Water Res; 2012 Mar; 46(4):1241-50. PubMed ID: 22209277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome.
    Zhang S; Benoit G
    Aquat Toxicol; 2019 Oct; 215():105271. PubMed ID: 31470337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of laser irradiation on a bloom forming cyanobacterium Microcystis aeruginosa.
    Li T; Bi Y; Liu J; Wu C
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20297-20306. PubMed ID: 27448813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of H2O2 and UV processes on the inactivation efficiency of Microcystic aeruginosa].
    Guo JW; Zhang YJ; Zeng G; Zhou LL; Gao NY
    Huan Jing Ke Xue; 2010 Aug; 31(8):1801-6. PubMed ID: 21090296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic suppression effects upon the combination of UV-C irradiation and berberine on Microcystis aeruginosa and Scenedesmus obliquus in reclaimed water: Effectiveness and mechanisms.
    Li S; Tao Y; Dao GH; Hu HY
    Sci Total Environ; 2020 Nov; 744():140937. PubMed ID: 32711324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of photoreactivation on ultraviolet inactivation of Microcystis aeruginosa.
    Sakai H; Katayama H; Oguma K; Ohgaki S
    Water Sci Technol; 2011; 63(6):1224-9. PubMed ID: 21436560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Dynamic experiment on controlling of Microcystis aeruginosa by UV-C irradiation].
    Yuan K; Mao XZ; Tao Y; Zhang XH
    Huan Jing Ke Xue; 2010 Feb; 31(2):310-7. PubMed ID: 20391695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of low or medium-pressure UV irradiation on the release of intracellular microcystin.
    Sakai H; Oguma K; Katayama H; Ohgaki S
    Water Res; 2007 Aug; 41(15):3458-64. PubMed ID: 17548104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of low- or medium-pressure ultraviolet lamp irradiation on Microcystis aeruginosa and Anabaena variabilis.
    Sakai H; Oguma K; Katayama H; Ohgaki S
    Water Res; 2007 Jan; 41(1):11-8. PubMed ID: 17097715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation and degradation of Microcystis aeruginosa by UV-C irradiation.
    Ou H; Gao N; Deng Y; Wang H; Zhang H
    Chemosphere; 2011 Nov; 85(7):1192-8. PubMed ID: 21872902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes.
    Kataria S; Jajoo A; Guruprasad KN
    J Photochem Photobiol B; 2014 Aug; 137():55-66. PubMed ID: 24725638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The growth suppression effects of UV-C irradiation on Microcystis aeruginosa and Chlorella vulgaris under solo-culture and co-culture conditions in reclaimed water.
    Li S; Dao GH; Tao Y; Zhou J; Jiang HS; Xue YM; Yu WW; Yong XL; Hu HY
    Sci Total Environ; 2020 Apr; 713():136374. PubMed ID: 31955073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotics promoted the recovery of Microcystis aeruginosa after UV-B radiation at cellular and proteomic levels.
    Jiang Y; Liu Y; Zhang J; Gao B
    Ecotoxicol Environ Saf; 2020 Mar; 190():110080. PubMed ID: 31855790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on inhibitive behaviors of electrolysis on the growth of Microcystis aeruginosa.
    Xu YF; Yang J; Ou MM; Wang YL; Jia JP; Pan HD
    Environ Technol; 2006 Jun; 27(6):673-82. PubMed ID: 16865923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation.
    Ren L; Wang P; Wang C; Paerl HW; Wang H
    Environ Pollut; 2020 Jan; 256():113441. PubMed ID: 31672370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii.
    Xing W; Huang WM; Li DH; Liu YD
    Curr Microbiol; 2007 Aug; 55(2):94-8. PubMed ID: 17632756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Recruitment ability of Microcystis aeruginosa under low light-low temperature combination].
    Tang J; Song LR; Sun SS; Wei HH; Wan N
    Huan Jing Ke Xue; 2010 Dec; 31(12):2932-7. PubMed ID: 21360882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiotic contaminants reduced the treatment efficiency of UV-C on Microcystis aeruginosa through hormesis.
    Jiang Y; Liu Y; Zhang J
    Environ Pollut; 2020 Jun; 261():114193. PubMed ID: 32088440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of jet cavitation on the growth of Microcystis aeruginosa.
    Xu Y; Yang J; Wang Y; Liu F; Jia J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(10):2345-58. PubMed ID: 17018417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.