These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 23838094)

  • 21. Foxc1 is required for early stage telencephalic vascular development.
    Prasitsak T; Nandar M; Okuhara S; Ichinose S; Ota MS; Iseki S
    Dev Dyn; 2015 May; 244(5):703-11. PubMed ID: 25733312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primary cellular meningeal defects cause neocortical dysplasia and dyslamination.
    Hecht JH; Siegenthaler JA; Patterson KP; Pleasure SJ
    Ann Neurol; 2010 Oct; 68(4):454-64. PubMed ID: 20976766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FGF19 is a target for FOXC1 regulation in ciliary body-derived cells.
    Tamimi Y; Skarie JM; Footz T; Berry FB; Link BA; Walter MA
    Hum Mol Genet; 2006 Nov; 15(21):3229-40. PubMed ID: 17000708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BMPs and BMP receptors in mouse metanephric development: in vivo and in vitro studies.
    Martinez G; Mishina Y; Bertram JF
    Int J Dev Biol; 2002; 46(4):525-33. PubMed ID: 12141440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development.
    Zarbalis K; Siegenthaler JA; Choe Y; May SR; Peterson AS; Pleasure SJ
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):14002-7. PubMed ID: 17715063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kidney development and gene expression in the HIF2alpha knockout mouse.
    Steenhard BM; Freeburg PB; Isom K; Stroganova L; Borza DB; Hudson BG; St John PL; Zelenchuk A; Abrahamson DR
    Dev Dyn; 2007 Apr; 236(4):1115-25. PubMed ID: 17342756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transcription factor gene FOXC1 exhibits a limited role in primary congenital glaucoma.
    Chakrabarti S; Kaur K; Rao KN; Mandal AK; Kaur I; Parikh RS; Thomas R
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):75-83. PubMed ID: 18708620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of angiotensin in the development of the kidney and urinary tract.
    Pope JC; Nishimura H; Ichikawa I
    Nephrologie; 1998; 19(7):433-6. PubMed ID: 9857380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal procedure for extracting RNA from human ocular tissues and expression profiling of the congenital glaucoma gene FOXC1 using quantitative RT-PCR.
    Wang WH; McNatt LG; Shepard AR; Jacobson N; Nishimura DY; Stone EM; Sheffield VC; Clark AF
    Mol Vis; 2001 Apr; 7():89-94. PubMed ID: 11320352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and developmental mechanisms of anterior segment dysgenesis.
    Sowden JC
    Eye (Lond); 2007 Oct; 21(10):1310-8. PubMed ID: 17914434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embryonic pathogenesis of hypogonadism and renal hypoplasia in hgn/hgn rats characterized by male sterility, reduced female fertility and progressive renal insufficiency.
    Suzuki H; Yagi M; Saito K; Suzuki K
    Congenit Anom (Kyoto); 2007 Mar; 47(1):34-44. PubMed ID: 17300688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial gene expression in the T-stage mouse metanephros.
    Caruana G; Cullen-McEwen L; Nelson AL; Kostoulias X; Woods K; Gardiner B; Davis MJ; Taylor DF; Teasdale RD; Grimmond SM; Little MH; Bertram JF
    Gene Expr Patterns; 2006 Oct; 6(8):807-25. PubMed ID: 16545622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Foxc1 Ablated Mice Are Anhidrotic and Recapitulate Features of Human Miliaria Sweat Retention Disorder.
    Cui CY; Ishii R; Campbell DP; Michel M; Piao Y; Kume T; Schlessinger D
    J Invest Dermatol; 2017 Jan; 137(1):38-45. PubMed ID: 27592801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired meningeal development in association with apical expansion of calvarial bone osteogenesis in the Foxc1 mutant.
    Vivatbutsiri P; Ichinose S; Hytönen M; Sainio K; Eto K; Iseki S
    J Anat; 2008 May; 212(5):603-11. PubMed ID: 18422524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cooperative roles of Foxc1 and Foxc2 in cardiovascular development.
    Kume T
    Adv Exp Med Biol; 2009; 665():63-77. PubMed ID: 20429416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial Relationship Between the Metanephros and Adjacent Organs According to the Carnegie Stage of Development.
    Ishiyama H; Ishikawa A; Imai H; Matsuda T; Yoneyama A; Yamada S; Takakuwa T
    Anat Rec (Hoboken); 2019 Nov; 302(11):1901-1915. PubMed ID: 30809945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple Cystic Formation in Lower Pole of Kidney.
    Swan RH
    Proc R Soc Med; 1923; 16(Sect Urol):41. PubMed ID: 19983428
    [No Abstract]   [Full Text] [Related]  

  • 38. Novel maternal duplication of 6p22.3-p25.3 with subtelomeric 6p25.3 deletion: new clinical findings and genotype-phenotype correlations.
    Zhang L; Tie X; Che F; Wang G; Ge Y; Li B; Yang Y
    Mol Cytogenet; 2023 Jun; 16(1):11. PubMed ID: 37303060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenotype expansion of heterozygous FOXC1 pathogenic variants toward involvement of congenital anomalies of the kidneys and urinary tract (CAKUT).
    Wu CW; Mann N; Nakayama M; Connaughton DM; Dai R; Kolvenbach CM; Kause F; Ottlewski I; Wang C; Klämbt V; Seltzsam S; Lai EW; Selvin A; Senguttuva P; Bodamer O; Stein DR; El Desoky S; Kari JA; Tasic V; Bauer SB; Shril S; Hildebrandt F
    Genet Med; 2020 Oct; 22(10):1673-1681. PubMed ID: 32475988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Duplex kidney formation: developmental mechanisms and genetic predisposition.
    Kozlov VM; Schedl A
    F1000Res; 2020; 9():. PubMed ID: 32030122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.