BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23838320)

  • 1. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures.
    Ahmad M; Lee SS; Rajapaksha AU; Vithanage M; Zhang M; Cho JS; Lee SE; Ok YS
    Bioresour Technol; 2013 Sep; 143():615-22. PubMed ID: 23838320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.
    Ahmad M; Lee SS; Dou X; Mohan D; Sung JK; Yang JE; Ok YS
    Bioresour Technol; 2012 Aug; 118():536-44. PubMed ID: 22721877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Sorption of
    Ma FF; Zhao BW
    Huan Jing Ke Xue; 2017 Feb; 38(2):837-844. PubMed ID: 29964545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ; Schmidt W; Schüth C
    Chemosphere; 2018 Jul; 203():34-43. PubMed ID: 29605747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes.
    Ahmad M; Lee SS; Oh SE; Mohan D; Moon DH; Lee YH; Ok YS
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8364-73. PubMed ID: 23608978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peat moss-derived biochars as effective sorbents for VOCs' removal in groundwater.
    Kim J; Lee SS; Khim J
    Environ Geochem Health; 2019 Aug; 41(4):1637-1646. PubMed ID: 28780675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures.
    Park JH; Wang JJ; Kim SH; Kang SW; Jeong CY; Jeon JR; Park KH; Cho JS; Delaune RD; Seo DC
    J Colloid Interface Sci; 2019 Oct; 553():298-307. PubMed ID: 31212229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation.
    Srinivasan P; Sarmah AK
    Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars).
    Kasozi GN; Zimmerman AR; Nkedi-Kizza P; Gao B
    Environ Sci Technol; 2010 Aug; 44(16):6189-95. PubMed ID: 20669904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.
    Wang D; Zhang W; Hao X; Zhou D
    Environ Sci Technol; 2013 Jan; 47(2):821-8. PubMed ID: 23249307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH; Kim JY; Cho TS; Choi JW
    Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor.
    Wei L; Huang Y; Li Y; Huang L; Mar NN; Huang Q; Liu Z
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4552-4561. PubMed ID: 27957688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water.
    Choi YK; Kan E
    Chemosphere; 2019 Mar; 218():741-748. PubMed ID: 30504049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures.
    Chen Z; Chen B; Zhou D; Chen W
    Environ Sci Technol; 2012 Nov; 46(22):12476-83. PubMed ID: 23121559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene.
    Park J; Hung I; Gan Z; Rojas OJ; Lim KH; Park S
    Bioresour Technol; 2013 Dec; 149():383-9. PubMed ID: 24128401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysed waste materials show potential for remediation of trichloroethylene-contaminated water.
    Siggins A; Abram F; Healy MG
    J Hazard Mater; 2020 May; 390():121909. PubMed ID: 31882342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper removal from aqueous solution using chemical precipitation and adsorption by Himalayan Pine Forest Residue as Biochar.
    Bashir M; Mohan C; Tyagi S; Annachhatre A
    Water Sci Technol; 2022 Aug; 86(3):530-554. PubMed ID: 35960835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling trichloroethylene adsorption by activated carbon preloaded with natural dissolved organic matter using a modified IAST approach.
    Wigton A; Kilduff JE
    Environ Sci Technol; 2004 Nov; 38(22):5825-33. PubMed ID: 15573579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.