These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 23838440)

  • 1. DNA replication timing.
    Rhind N; Gilbert DM
    Cold Spring Harb Perspect Biol; 2013 Aug; 5(8):a010132. PubMed ID: 23838440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-to-cell variability and robustness in S-phase duration from genome replication kinetics.
    Zhang Q; Bassetti F; Gherardi M; Lagomarsino MC
    Nucleic Acids Res; 2017 Aug; 45(14):8190-8198. PubMed ID: 28854733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin Firing Regulations to Control Genome Replication Timing.
    Boos D; Ferreira P
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30845782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication Domains: Genome Compartmentalization into Functional Replication Units.
    Zhao PA; Rivera-Mulia JC; Gilbert DM
    Adv Exp Med Biol; 2017; 1042():229-257. PubMed ID: 29357061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and characterization of replication origins by deep sequencing.
    Xu J; Yanagisawa Y; Tsankov AM; Hart C; Aoki K; Kommajosyula N; Steinmann KE; Bochicchio J; Russ C; Regev A; Rando OJ; Nusbaum C; Niki H; Milos P; Weng Z; Rhind N
    Genome Biol; 2012 Apr; 13(4):R27. PubMed ID: 22531001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome.
    Schwaiger M; Stadler MB; Bell O; Kohler H; Oakeley EJ; Schübeler D
    Genes Dev; 2009 Mar; 23(5):589-601. PubMed ID: 19270159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture.
    Pope BD; Gilbert DM
    J Mol Biol; 2013 Nov; 425(23):4690-5. PubMed ID: 23603017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication timing is regulated by the number of MCMs loaded at origins.
    Das SP; Borrman T; Liu VW; Yang SC; Bechhoefer J; Rhind N
    Genome Res; 2015 Dec; 25(12):1886-92. PubMed ID: 26359232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late replication domains are evolutionary conserved in the Drosophila genome.
    Andreyenkova NG; Kolesnikova TD; Makunin IV; Pokholkova GV; Boldyreva LV; Zykova TY; Zhimulev IF; Belyaeva ES
    PLoS One; 2013; 8(12):e83319. PubMed ID: 24391753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program.
    Renard-Guillet C; Kanoh Y; Shirahige K; Masai H
    Semin Cell Dev Biol; 2014 Jun; 30():110-20. PubMed ID: 24727367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome size in diploid eukaryotic species centers on the average length with a conserved boundary.
    Li X; Zhu C; Lin Z; Wu Y; Zhang D; Bai G; Song W; Ma J; Muehlbauer GJ; Scanlon MJ; Zhang M; Yu J
    Mol Biol Evol; 2011 Jun; 28(6):1901-11. PubMed ID: 21239390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity.
    Du Q; Smith GC; Luu PL; Ferguson JM; Armstrong NJ; Caldon CE; Campbell EM; Nair SS; Zotenko E; Gould CM; Buckley M; Chia KM; Portman N; Lim E; Kaczorowski D; Chan CL; Barton K; Deveson IW; Smith MA; Powell JE; Skvortsova K; Stirzaker C; Achinger-Kawecka J; Clark SJ
    Cell Rep; 2021 Sep; 36(12):109722. PubMed ID: 34551299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural-Functional Domains of the Eukaryotic Genome.
    Razin SV; Gavrilov AA
    Biochemistry (Mosc); 2018 Apr; 83(4):302-312. PubMed ID: 29626918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic gene regulation in three dimensions and its impact on genome evolution.
    Babu MM; Janga SC; de Santiago I; Pombo A
    Curr Opin Genet Dev; 2008 Dec; 18(6):571-82. PubMed ID: 19007886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Replication Origins.
    Marks AB; Fu H; Aladjem MI
    Adv Exp Med Biol; 2017; 1042():43-59. PubMed ID: 29357052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project.
    Gerstein MB; Lu ZJ; Van Nostrand EL; Cheng C; Arshinoff BI; Liu T; Yip KY; Robilotto R; Rechtsteiner A; Ikegami K; Alves P; Chateigner A; Perry M; Morris M; Auerbach RK; Feng X; Leng J; Vielle A; Niu W; Rhrissorrakrai K; Agarwal A; Alexander RP; Barber G; Brdlik CM; Brennan J; Brouillet JJ; Carr A; Cheung MS; Clawson H; Contrino S; Dannenberg LO; Dernburg AF; Desai A; Dick L; Dosé AC; Du J; Egelhofer T; Ercan S; Euskirchen G; Ewing B; Feingold EA; Gassmann R; Good PJ; Green P; Gullier F; Gutwein M; Guyer MS; Habegger L; Han T; Henikoff JG; Henz SR; Hinrichs A; Holster H; Hyman T; Iniguez AL; Janette J; Jensen M; Kato M; Kent WJ; Kephart E; Khivansara V; Khurana E; Kim JK; Kolasinska-Zwierz P; Lai EC; Latorre I; Leahey A; Lewis S; Lloyd P; Lochovsky L; Lowdon RF; Lubling Y; Lyne R; MacCoss M; Mackowiak SD; Mangone M; McKay S; Mecenas D; Merrihew G; Miller DM; Muroyama A; Murray JI; Ooi SL; Pham H; Phippen T; Preston EA; Rajewsky N; Rätsch G; Rosenbaum H; Rozowsky J; Rutherford K; Ruzanov P; Sarov M; Sasidharan R; Sboner A; Scheid P; Segal E; Shin H; Shou C; Slack FJ; Slightam C; Smith R; Spencer WC; Stinson EO; Taing S; Takasaki T; Vafeados D; Voronina K; Wang G; Washington NL; Whittle CM; Wu B; Yan KK; Zeller G; Zha Z; Zhong M; Zhou X; ; Ahringer J; Strome S; Gunsalus KC; Micklem G; Liu XS; Reinke V; Kim SK; Hillier LW; Henikoff S; Piano F; Snyder M; Stein L; Lieb JD; Waterston RH
    Science; 2010 Dec; 330(6012):1775-87. PubMed ID: 21177976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?
    Nora EP; Dekker J; Heard E
    Bioessays; 2013 Sep; 35(9):818-28. PubMed ID: 23832846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.