These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23838612)

  • 1. Search for new catalysts for the oxidation of SO₂.
    Loskyll J; Stöwe K; Maier WF
    ACS Comb Sci; 2013 Sep; 15(9):464-74. PubMed ID: 23838612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput technology for novel SO
    Loskyll J; Stoewe K; Maier WF
    Sci Technol Adv Mater; 2011 Oct; 12(5):054101. PubMed ID: 27877427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput screening of low temperature CO oxidation catalysts using IR thermography.
    Cypes S; Hagemeyer A; Hogan Z; Lesik A; Streukens G; Volpe AF; Weinberg WH; Yaccato K
    Comb Chem High Throughput Screen; 2007 Jan; 10(1):25-35. PubMed ID: 17266514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of elemental mercury with a novel membrane catalytic system at low temperature.
    Guo Y; Yan N; Yang S; Liu P; Wang J; Qu Z; Jia J
    J Hazard Mater; 2012 Apr; 213-214():62-70. PubMed ID: 22341492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined removal of SO2 and NO using sol-gel-derived copper oxide coated alumina sorbents/catalysts.
    Buelna G; Lin YS
    Environ Technol; 2003 Sep; 24(9):1087-95. PubMed ID: 14599142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
    Xu C; Liu J; Zhao Z; Yu F; Cheng K; Wei Y; Duan A; Jiang G
    J Environ Sci (China); 2015 May; 31():74-80. PubMed ID: 25968261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron, lanthanum and manganese oxides loaded on gamma-AI2O3 for selective catalytic reduction of NO with NH3 at low temperature.
    Zhao W; Li C; Lu P; Wen Q; Zhao Y; Zhang X; Fan C; Tao S
    Environ Technol; 2013; 34(1-4):81-90. PubMed ID: 23530318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.
    Yan N; Chen W; Chen J; Qu Z; Guo Y; Yang S; Jia J
    Environ Sci Technol; 2011 Jul; 45(13):5725-30. PubMed ID: 21662986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic reduction of sulfur dioxide with carbon monoxide over tin dioxide for direct sulfur recovery process.
    Han GB; Park NK; Yoon SH; Lee TJ
    Chemosphere; 2008 Aug; 72(11):1744-50. PubMed ID: 18565568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.
    Chen CL; Wang CH; Weng HS
    Chemosphere; 2004 Aug; 56(5):425-31. PubMed ID: 15212907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity.
    Chang H; Jong MT; Wang C; Qu R; Du Y; Li J; Hao J
    Environ Sci Technol; 2013 Oct; 47(20):11692-9. PubMed ID: 24024774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective catalytic oxidation of H₂S over iron oxide supported on alumina-intercalated Laponite clay catalysts.
    Zhang X; Dou G; Wang Z; Li L; Wang Y; Wang H; Hao Z
    J Hazard Mater; 2013 Sep; 260():104-11. PubMed ID: 23747468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced catalytic complete oxidation of 1,2-dichloroethane over mesoporous transition metal-doped γ-Al2O3.
    Khaleel A; Nawaz M
    J Environ Sci (China); 2015 Mar; 29():199-209. PubMed ID: 25766029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput synthesis and screening of new catalytic materials for the direct epoxidation of propylene.
    Kahn M; Seubsai A; Onal I; Senkan S
    Comb Chem High Throughput Screen; 2010 Jan; 13(1):67-74. PubMed ID: 20201825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3.
    Bourikas K; Fountzoula C; Kordulis C
    Langmuir; 2004 Nov; 20(24):10663-9. PubMed ID: 15544399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of lactose and rhamnose oxidation over supported metal catalysts.
    Mäki-Arvela P; Tokarev AV; Murzina EV; Campo B; Heikkilä T; Brozinski JM; Wolf D; Murzin DY
    Phys Chem Chem Phys; 2011 May; 13(20):9268-80. PubMed ID: 21475770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene.
    Kim SC; Shim WG
    J Hazard Mater; 2008 Jun; 154(1-3):310-6. PubMed ID: 18035484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.
    Valverde IM; Paulino JF; Afonso JC
    J Hazard Mater; 2008 Dec; 160(2-3):310-7. PubMed ID: 18400377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of activity and SO₂ tolerance of Sn-modified MnOx-CeO₂ catalysts for NH₃-SCR at low temperatures.
    Chang H; Chen X; Li J; Ma L; Wang C; Liu C; Schwank JW; Hao J
    Environ Sci Technol; 2013 May; 47(10):5294-301. PubMed ID: 23582170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.