These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23838641)

  • 1. Role of kinetic inductance in transport properties of shunted superconducting nanowires.
    Lin SZ; Roy D
    J Phys Condens Matter; 2013 Aug; 25(32):325701. PubMed ID: 23838641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid rf SQUID qubit based on high kinetic inductance.
    Peltonen JT; Coumou PCJJ; Peng ZH; Klapwijk TM; Tsai JS; Astafiev OV
    Sci Rep; 2018 Jul; 8(1):10033. PubMed ID: 29968751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gate-tuned high frequency response of carbon nanotube Josephson junctions.
    Cleuziou JP; Wernsdorfer W; Andergassen S; Florens S; Bouchiat V; Ondarçuhu T; Monthioux M
    Phys Rev Lett; 2007 Sep; 99(11):117001. PubMed ID: 17930461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.
    Makise K; Terai H; Tominari Y; Tanaka S; Shinozaki B
    Sci Rep; 2016 Jun; 6():27001. PubMed ID: 27311595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable superconducting nanoinductors.
    Annunziata AJ; Santavicca DF; Frunzio L; Catelani G; Rooks MJ; Frydman A; Prober DE
    Nanotechnology; 2010 Nov; 21(44):445202. PubMed ID: 20921595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting junction of a single-crystalline au nanowire for an ideal Josephson device.
    Jung M; Noh H; Doh YJ; Song W; Chong Y; Choi MS; Yoo Y; Seo K; Kim N; Woo BC; Kim B; Kim J
    ACS Nano; 2011 Mar; 5(3):2271-6. PubMed ID: 21355535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover from Josephson to multiple Andreev reflection currents in atomic contacts.
    Chauvin M; vom Stein P; Esteve D; Urbina C; Cuevas JC; Yeyati AL
    Phys Rev Lett; 2007 Aug; 99(6):067008. PubMed ID: 17930862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current-phase relationship, thermal and quantum phase slips in superconducting nanowires made on a scaffold created using adhesive tape.
    Bae MH; Dinsmore RC; Aref T; Brenner M; Bezryadin A
    Nano Lett; 2009 May; 9(5):1889-96. PubMed ID: 19344118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconductor-insulator transition in a two-dimensional array of resistively shunted small josephson junctions.
    Takahide Y; Yagi R; Kanda A; Ootuka Y; Kobayashi Si
    Phys Rev Lett; 2000 Aug; 85(9):1974-7. PubMed ID: 10970661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bolometric detection of Josephson inductance in a highly resistive environment.
    Subero D; Maillet O; Golubev DS; Thomas G; Peltonen JT; Karimi B; Marín-Suárez M; Yeyati AL; Sánchez R; Park S; Pekola JP
    Nat Commun; 2023 Dec; 14(1):7924. PubMed ID: 38040683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.
    Lehtinen JS; Zakharov K; Arutyunov KY
    Phys Rev Lett; 2012 Nov; 109(18):187001. PubMed ID: 23215316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible method to observe the breathing mode of a magnetic domain wall in the Josephson junction.
    Mori M; Koshibae W; Hikino S; Maekawa S
    J Phys Condens Matter; 2014 Jun; 26(25):255702. PubMed ID: 24888471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Superconducting Proximity Effects in PbS Semiconductor Nanowires.
    Kim BK; Kim HS; Yang Y; Peng X; Yu D; Doh YJ
    ACS Nano; 2017 Jan; 11(1):221-226. PubMed ID: 28051853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary demonstration of a persistent Josephson phase-slip memory cell with topological protection.
    Ligato N; Strambini E; Paolucci F; Giazotto F
    Nat Commun; 2021 Aug; 12(1):5200. PubMed ID: 34465775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the Gap Between Nanowires and Josephson Junctions: A Superconducting Device Based on Controlled Fluxon Transfer.
    Toomey E; Onen M; Colangelo M; Butters BA; McCaughan AN; Berggren KK
    Phys Rev Appl; 2019; 11(3):. PubMed ID: 32166099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the current-phase relation of superconducting atomic contacts.
    Della Rocca ML; Chauvin M; Huard B; Pothier H; Esteve D; Urbina C
    Phys Rev Lett; 2007 Sep; 99(12):127005. PubMed ID: 17930546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous transport effects on switching currents of graphene-based Josephson junctions.
    Guarcello C; Valenti D; Spagnolo B; Pierro V; Filatrella G
    Nanotechnology; 2017 Mar; 28(13):134001. PubMed ID: 28164862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.
    Constantino NGN; Anwar MS; Kennedy OW; Dang M; Warburton PA; Fenton JC
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29914174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise in situ tuning of the critical current of a superconducting nanowire using high bias voltage pulses.
    Aref T; Bezryadin A
    Nanotechnology; 2011 Sep; 22(39):395302. PubMed ID: 21891860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave reflection measurement of critical currents in a nanotube Josephson transistor with a resistive environment.
    Lechner L; Gaass M; Paila A; Sillanpää MA; Strunk C; Hakonen PJ
    Nanotechnology; 2011 Mar; 22(12):125203. PubMed ID: 21317499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.