These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23838804)

  • 1. Morphological transformation of hematite nanostructures during oxidation of iron.
    Yuan L; Cai R; Jang JI; Zhu W; Wang C; Wang Y; Zhou G
    Nanoscale; 2013 Aug; 5(16):7581-8. PubMed ID: 23838804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure versus properties in α-Fe2O3 nanowires and nanoblades.
    Wang C; Wang Y; Liu X; Yang H; Sun J; Yuan L; Zhou G; Rosei F
    Nanotechnology; 2016 Jan; 27(3):035702. PubMed ID: 26636439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings.
    Jia CJ; Sun LD; Luo F; Han XD; Heyderman LJ; Yan ZG; Yan CH; Zheng K; Zhang Z; Takano M; Hayashi N; Eltschka M; Kläui M; Rüdiger U; Kasama T; Cervera-Gontard L; Dunin-Borkowski RE; Tzvetkov G; Raabe J
    J Am Chem Soc; 2008 Dec; 130(50):16968-77. PubMed ID: 19053430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of gallium droplets on the morphologies and structures of alpha-Fe2O3 nanostructures grown on iron substrates.
    Yang Q; Kukino H; Tatsuoka H
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7795-9. PubMed ID: 21138035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron.
    Hiralal P; Unalan HE; Wijayantha KG; Kursumovic A; Jefferson D; Macmanus-Driscoll JL; Amaratunga GA
    Nanotechnology; 2008 Nov; 19(45):455608. PubMed ID: 21832785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose-assisted formation of porous hematite nanostructures.
    Ivanova A; Fominykh K; Fattakhova-Rohlfing D; Zeller P; Döblinger M; Bein T
    Inorg Chem; 2015 Feb; 54(3):1129-35. PubMed ID: 25549021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.
    Wen X; Wang S; Ding Y; Wang ZL; Yang S
    J Phys Chem B; 2005 Jan; 109(1):215-20. PubMed ID: 16851007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties.
    Morber JR; Ding Y; Haluska MS; Li Y; Liu JP; Wang ZL; Snyder RL
    J Phys Chem B; 2006 Nov; 110(43):21672-9. PubMed ID: 17064124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
    Rosso KM; Yanina SV; Gorski CA; Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):61-7. PubMed ID: 20039734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of hierarchical pure ZnO nanostructures with controllable morphology.
    Fan DH; Zhu YF; Shen WZ
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6325-31. PubMed ID: 19205201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting.
    Chernomordik BD; Russell HB; Cvelbar U; Jasinski JB; Kumar V; Deutsch T; Sunkara MK
    Nanotechnology; 2012 May; 23(19):194009. PubMed ID: 22539110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ monitoring of the growth, intermediate phase transformations and templating of single crystal VO2 nanowires and nanoplatelets.
    Strelcov E; Davydov AV; Lanke U; Watts C; Kolmakov A
    ACS Nano; 2011 Apr; 5(4):3373-84. PubMed ID: 21428376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of protein-metal oxide nanostructures by the sonochemical method: observation of nanofibers and nanoneedles.
    Bunker CE; Novak KC; Guliants EA; Harruff BA; Meziani MJ; Lin Y; Sun YP
    Langmuir; 2007 Sep; 23(20):10342-7. PubMed ID: 17713934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicrystalline hematite nanowires.
    Wang R; Chen Y; Fu Y; Zhang H; Kisielowski C
    J Phys Chem B; 2005 Jun; 109(25):12245-9. PubMed ID: 16852510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of synthetic hematite (α-Fe2O3) nanoparticles using a multi-technique approach.
    Colombo C; Palumbo G; Ceglie A; Angelico R
    J Colloid Interface Sci; 2012 May; 374(1):118-26. PubMed ID: 22381942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational solution growth of α-FeOOH nanowires driven by screw dislocations and their conversion to α-Fe2O3 nanowires.
    Meng F; Morin SA; Jin S
    J Am Chem Soc; 2011 Jun; 133(22):8408-11. PubMed ID: 21561154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Fe-group metal oxide nanostructures by thermal oxidation and their magnetic properties.
    Xu YY; Dong Z; Zhang H
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1114-21. PubMed ID: 22629905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.