These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 23838961)
1. Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants. Antoniou C; Filippou P; Mylona P; Fasoula D; Ioannides I; Polidoros A; Fotopoulos V Plant Signal Behav; 2013 Sep; 8(9):. PubMed ID: 23838961 [TBL] [Abstract][Full Text] [Related]
2. Application of sodium nitroprusside results in distinct antioxidant gene expression patterns in leaves of mature and senescing Medicago truncatula plants. Fotopoulos V; Antoniou C; Filippou P; Mylona P; Fasoula D; Ioannides I; Polidoros A Protoplasma; 2014 Jul; 251(4):973-8. PubMed ID: 24232981 [TBL] [Abstract][Full Text] [Related]
3. NO loading: Efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Filippou P; Antoniou C; Yelamanchili S; Fotopoulos V Plant Physiol Biochem; 2012 Nov; 60():115-8. PubMed ID: 22922111 [TBL] [Abstract][Full Text] [Related]
4. Alternative oxidase pathway is involved in the exogenous SNP-elevated tolerance of Medicago truncatula to salt stress. Jian W; Zhang DW; Zhu F; Wang SX; Pu XJ; Deng XG; Luo SS; Lin HH J Plant Physiol; 2016 Apr; 193():79-87. PubMed ID: 26962709 [TBL] [Abstract][Full Text] [Related]
5. The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Filippou P; Antoniou C; Fotopoulos V Free Radic Biol Med; 2013 Mar; 56():172-83. PubMed ID: 23041351 [TBL] [Abstract][Full Text] [Related]
6. Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants. Filippou P; Antoniou C; Fotopoulos V Plant Signal Behav; 2011 Feb; 6(2):270-7. PubMed ID: 21330785 [TBL] [Abstract][Full Text] [Related]
8. New Insights into the Transcriptional Regulation of Genes Involved in the Nitrogen Use Efficiency under Potassium Chlorate in Rice ( Kabange NR; Park SY; Lee JY; Shin D; Lee SM; Kwon Y; Cha JK; Cho JH; Duyen DV; Ko JM; Lee JH Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671842 [TBL] [Abstract][Full Text] [Related]
9. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. Pellizzaro A; Clochard T; Cukier C; Bourdin C; Juchaux M; Montrichard F; Thany S; Raymond V; Planchet E; Limami AM; Morère-Le Paven MC Plant Physiol; 2014 Dec; 166(4):2152-65. PubMed ID: 25367858 [TBL] [Abstract][Full Text] [Related]
10. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment. Filippou P; Antoniou C; Obata T; Van Der Kelen K; Harokopos V; Kanetis L; Aidinis V; Van Breusegem F; Fernie AR; Fotopoulos V J Exp Bot; 2016 Mar; 67(5):1259-74. PubMed ID: 26712823 [TBL] [Abstract][Full Text] [Related]
11. Comparative Physiological Analysis Reveals the Role of NR-Derived Nitric Oxide in the Cold Tolerance of Forage Legumes. Zhang P; Li S; Zhao P; Guo Z; Lu S Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30893759 [TBL] [Abstract][Full Text] [Related]
12. Alleviative effects of nitric oxide on Vigna radiata seedlings under acidic rain stress. Jiao R; Zhang M; Wei Z; Xu J; Zhang H Mol Biol Rep; 2021 Mar; 48(3):2243-2251. PubMed ID: 33689094 [TBL] [Abstract][Full Text] [Related]
13. Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.). Du S; Zhang Y; Lin X; Wang Y; Tang C Plant Cell Environ; 2008 Feb; 31(2):195-204. PubMed ID: 18028279 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury. Farag M; Najeeb U; Yang J; Hu Z; Fang ZM Plant Physiol Biochem; 2017 Feb; 111():166-173. PubMed ID: 27940267 [TBL] [Abstract][Full Text] [Related]
15. Nitrate reductase from Triticum aestivum leaves: regulation of activity and possible role in production of nitric oxide. Galeeva EI; Trifonova TV; Ponomareva AA; Viktorova LV; Minibayeva FV Biochemistry (Mosc); 2012 Apr; 77(4):404-10. PubMed ID: 22809160 [TBL] [Abstract][Full Text] [Related]
16. Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley. Hu Y; You J; Liang X Plant Cell Rep; 2015 Mar; 34(3):367-79. PubMed ID: 25447636 [TBL] [Abstract][Full Text] [Related]
17. Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Jin CW; Du ST; Zhang YS; Lin XY; Tang CX Ann Bot; 2009 Jul; 104(1):9-17. PubMed ID: 19376780 [TBL] [Abstract][Full Text] [Related]
18. An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula. Cabeza R; Koester B; Liese R; Lingner A; Baumgarten V; Dirks J; Salinas-Riester G; Pommerenke C; Dittert K; Schulze J Plant Physiol; 2014 Jan; 164(1):400-11. PubMed ID: 24285852 [TBL] [Abstract][Full Text] [Related]
19. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies. Du S; Zhang R; Zhang P; Liu H; Yan M; Chen N; Xie H; Ke S J Exp Bot; 2016 Feb; 67(3):893-904. PubMed ID: 26608644 [TBL] [Abstract][Full Text] [Related]