BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23839487)

  • 21. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range].
    Wang YH; Yang HQ; Xie SS; Ye Z; Su YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography.
    Wang X; Pogue BW; Jiang S; Dehghani H; Song X; Srinivasan S; Brooksby BA; Paulsen KD; Kogel C; Poplack SP; Wells WA
    J Biomed Opt; 2006; 11(4):041106. PubMed ID: 16965134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma membrane proteins: A new probe for the characterization of breast cancer.
    Fahmy HM; Ismail AM; El-Feky AS; Abu Serea ES; Elshemey WM
    Life Sci; 2019 Oct; 234():116777. PubMed ID: 31465734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue phantom-based breast cancer detection using continuous near-infrared sensor.
    Liu D; Liu X; Zhang Y; Wang Q; Lu J
    Bioengineered; 2016 Sep; 7(5):321-326. PubMed ID: 27459672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical properties of normal and diseased human breast tissues in the visible and near infrared.
    Peters VG; Wyman DR; Patterson MS; Frank GL
    Phys Med Biol; 1990 Sep; 35(9):1317-34. PubMed ID: 2236211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared optical imaging of the breast with model-based reconstruction.
    Jiang H; Iftimia NV; Xu Y; Eggert JA; Fajardo LL; Klove KL
    Acad Radiol; 2002 Feb; 9(2):186-94. PubMed ID: 11918371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy.
    Chowdary MV; Kumar KK; Kurien J; Mathew S; Krishna CM
    Biopolymers; 2006 Dec; 83(5):556-69. PubMed ID: 16897764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical mammography: a new technique for visualizing breast lesions in women presenting non palpable BIRADS 4-5 imaging findings: preliminary results with radiologic-pathologic correlation.
    Athanasiou A; Vanel D; Fournier L; Balleyguier C
    Cancer Imaging; 2007 Feb; 7(1):34-40. PubMed ID: 17339139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison between ultraviolet-visible and near-infrared elastic scattering spectroscopy of chemically induced melanomas in an animal model.
    A'Amar OM; Ley RD; Bigio IJ
    J Biomed Opt; 2004; 9(6):1320-6. PubMed ID: 15568954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Custom optical imaging system for ex-vivo breast cancer detection based on spectral signature.
    Aref MH; Aboughaleb IH; El-Sharkawy YH
    Surg Oncol; 2020 Dec; 35():547-555. PubMed ID: 33212419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sources of absorption and scattering contrast for near-infrared optical mammography.
    Cerussi AE; Berger AJ; Bevilacqua F; Shah N; Jakubowski D; Butler J; Holcombe RF; Tromberg BJ
    Acad Radiol; 2001 Mar; 8(3):211-8. PubMed ID: 11249084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of optical coefficients and fractal dimensional parameters of cancerous and normal prostate tissues.
    Pu Y; Wang W; Al-Rubaiee M; Gayen SK; Xu M
    Appl Spectrosc; 2012 Jul; 66(7):828-34. PubMed ID: 22710079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short wavelength infrared optical windows for evaluation of benign and malignant tissues.
    Sordillo DC; Sordillo LA; Sordillo PP; Shi L; Alfano RR
    J Biomed Opt; 2017 Apr; 22(4):45002. PubMed ID: 28384701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries.
    de Boer LL; Molenkamp BG; Bydlon TM; Hendriks BH; Wesseling J; Sterenborg HJ; Ruers TJ
    Breast Cancer Res Treat; 2015 Aug; 152(3):509-18. PubMed ID: 26141407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance near-infrared imaging for breast cancer detection.
    El-Sharkawy YH; El-Sherif AF
    J Biomed Opt; 2014 Jan; 19(1):16018. PubMed ID: 24474504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopy enhances the information content of optical mammography.
    Cerussi AE; Jakubowski D; Shah N; Bevilacqua F; Lanning R; Berger AJ; Hsiang D; Butler J; Holcombe RF; Tromberg BJ
    J Biomed Opt; 2002 Jan; 7(1):60-71. PubMed ID: 11818013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy.
    Kukreti S; Cerussi AE; Tanamai W; Hsiang D; Tromberg BJ; Gratton E
    Radiology; 2010 Jan; 254(1):277-84. PubMed ID: 20032159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadband absorption spectroscopy of heterogeneous biological tissue.
    Blaney G; Curtsmith P; Sassaroli A; Fernandez C; Fantini S
    Appl Opt; 2021 Sep; 60(25):7552-7562. PubMed ID: 34613221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman Spectroscopy for Rapid Evaluation of Surgical Margins during Breast Cancer Lumpectomy.
    Zúñiga WC; Jones V; Anderson SM; Echevarria A; Miller NL; Stashko C; Schmolze D; Cha PD; Kothari R; Fong Y; Storrie-Lombardi MC
    Sci Rep; 2019 Oct; 9(1):14639. PubMed ID: 31601985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.