These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 23839910)
1. In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications. Lin WH; Tsai WB Biofabrication; 2013 Sep; 5(3):035008. PubMed ID: 23839910 [TBL] [Abstract][Full Text] [Related]
2. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Lee J; Yoo JJ; Atala A; Lee SJ Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575 [TBL] [Abstract][Full Text] [Related]
3. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Poursamar SA; Lehner AN; Azami M; Ebrahimi-Barough S; Samadikuchaksaraei A; Antunes AP Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():1-9. PubMed ID: 27040189 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of multi-biofunctional gelatin-based electrospun fibrous scaffolds for enhancement of osteogenesis of mesenchymal stem cells. Lin WH; Yu J; Chen G; Tsai WB Colloids Surf B Biointerfaces; 2016 Feb; 138():26-31. PubMed ID: 26642073 [TBL] [Abstract][Full Text] [Related]
5. Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering. Dai X; Kathiria K; Huang YC Biofabrication; 2014 Sep; 6(3):035005. PubMed ID: 24758872 [TBL] [Abstract][Full Text] [Related]
6. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking. Hu X; Lu L; Xu C; Li X Int J Biol Macromol; 2015 Jan; 72():403-9. PubMed ID: 25193098 [TBL] [Abstract][Full Text] [Related]
7. Electrospun protein fibers as matrices for tissue engineering. Li M; Mondrinos MJ; Gandhi MR; Ko FK; Weiss AS; Lelkes PI Biomaterials; 2005 Oct; 26(30):5999-6008. PubMed ID: 15894371 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of three-dimensional nanofibrous gelatin scaffolds using one-step crosslink technique. Teng F; Ding H; Huang Y; Wang J J Biomater Sci Polym Ed; 2018 Oct; 29(15):1859-1875. PubMed ID: 30132379 [TBL] [Abstract][Full Text] [Related]
9. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Gomes SR; Rodrigues G; Martins GG; Henriques CM; Silva JC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1219-27. PubMed ID: 23827564 [TBL] [Abstract][Full Text] [Related]
10. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Jiang Q; Reddy N; Yang Y Acta Biomater; 2010 Oct; 6(10):4042-51. PubMed ID: 20438870 [TBL] [Abstract][Full Text] [Related]
11. Storage stability of electrospun pure gelatin stabilized with EDC/Sulfo-NHS. Ghassemi Z; Slaughter G Biopolymers; 2018 Sep; 109(9):e23232. PubMed ID: 30191551 [TBL] [Abstract][Full Text] [Related]
12. Balanced electrostatic blending approach--an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold. Jetbumpenkul P; Amornsudthiwat P; Kanokpanont S; Damrongsakkul S Int J Biol Macromol; 2012 Jan; 50(1):7-13. PubMed ID: 21983026 [TBL] [Abstract][Full Text] [Related]
13. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146 [TBL] [Abstract][Full Text] [Related]
14. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition. Torricelli P; Gioffrè M; Fiorani A; Panzavolta S; Gualandi C; Fini M; Focarete ML; Bigi A Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():130-8. PubMed ID: 24433895 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties. Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Sisson K; Zhang C; Farach-Carson MC; Chase DB; Rabolt JF Biomacromolecules; 2009 Jul; 10(7):1675-80. PubMed ID: 19456101 [TBL] [Abstract][Full Text] [Related]
18. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888 [TBL] [Abstract][Full Text] [Related]
19. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Oryan A; Kamali A; Moshiri A; Baharvand H; Daemi H Int J Biol Macromol; 2018 Feb; 107(Pt A):678-688. PubMed ID: 28919526 [TBL] [Abstract][Full Text] [Related]
20. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration. Nagiah N; Madhavi L; Anitha R; Anandan C; Srinivasan NT; Sivagnanam UT Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4444-52. PubMed ID: 23910364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]