These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2383996)

  • 1. Front surface fluorescence measurements of the age-related change in the human lens.
    Liang JN
    Curr Eye Res; 1990 May; 9(5):399-405. PubMed ID: 2383996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Front surface fluorometric study of lens insoluble proteins.
    Liang JN; Pelletier MR; Chylack LT
    Curr Eye Res; 1988 Jan; 7(1):61-7. PubMed ID: 3359806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The uptake, location and fluorescence of hypericin in bovine intact lens.
    Sgarbossa A; Angelini N; Gioffré D; Youssef T; Lenci F; Roberts JE
    Curr Eye Res; 2000 Aug; 21(2):597-601. PubMed ID: 11148595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins.
    Kamei A
    Biol Pharm Bull; 1993 Sep; 16(9):870-5. PubMed ID: 8268853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage.
    Mizdrak J; Hains PG; Truscott RJ; Jamie JF; Davies MJ
    Free Radic Biol Med; 2008 Mar; 44(6):1108-19. PubMed ID: 18206985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age dependence and distribution of green and blue fluorophores in human lens homogenates.
    Yappert MC; Lal S; Borchman D
    Invest Ophthalmol Vis Sci; 1992 Dec; 33(13):3555-60. PubMed ID: 1464501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan Raman/457.9-nm-excited fluorescence of intact guinea pig lenses in aging and ultraviolet light.
    Barron BC; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):815-21. PubMed ID: 3570691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level.
    Gakamsky A; Duncan RR; Howarth NM; Dhillon B; Buttenschön KK; Daly DJ; Gakamsky D
    Sci Rep; 2017 Jan; 7():40375. PubMed ID: 28071717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan and kynurenine levels in lenses of Wistar and accelerated-senescence OXYS rats.
    Snytnikova OA; Kopylova LV; Chernyak EI; Morozov SV; Kolosova NG; Tsentalovich YP
    Mol Vis; 2009 Dec; 15():2780-8. PubMed ID: 20019876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ; Keizer E; Wollensak J; Hoenders HJ
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylamide and iodide fluorescence quenching studies on whole human lenses and their protein extracts.
    Lerman S; Moran M
    Curr Eye Res; 1988 Apr; 7(4):403-10. PubMed ID: 3371076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of lens crystallins photosensitized with tryptophan metabolites.
    Ichijima H; Iwata S
    Ophthalmic Res; 1987; 19(3):157-63. PubMed ID: 3658326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofluorescence of the crystalline lens in diabetes.
    Mosier MA; Occhipinti JR; Burstein NL
    Arch Ophthalmol; 1986 Sep; 104(9):1340-3. PubMed ID: 3753285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathionylation of lens proteins through the formation of thioether bond.
    Linetsky M; LeGrand RD
    Mol Cell Biochem; 2005 Apr; 272(1-2):133-44. PubMed ID: 16010980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycation of human lens proteins: preferential glycation of alpha A subunits.
    Swamy MS; Abraham A; Abraham EC
    Exp Eye Res; 1992 Mar; 54(3):337-45. PubMed ID: 1521566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of UV-A light on the chaperone-like properties of young and old lens alpha-crystallin.
    Weinreb O; van Boekel MA; Dovrat A; Bloemendal H
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):191-8. PubMed ID: 10634620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboflavin status and photo-induced riboflavin binding to the proteins of the rat ocular lens.
    Salim-Hanna M; Valenzuela A; Silva E
    Int J Vitam Nutr Res; 1988; 58(1):61-5. PubMed ID: 3384586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light.
    Ortwerth BJ; Bhattacharyya J; Shipova E
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3311-9. PubMed ID: 19264899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time resolved spectroscopic studies on the intact human lens.
    Dillon J; Atherton SJ
    Photochem Photobiol; 1990 Apr; 51(4):465-8. PubMed ID: 2343063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.