These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 238400)
21. Tuning the hydrophobicity overcomes unfavorable deprotonation making octylamino-substituted 7-nitrobenz-2-oxa-1,3-diazole (n-octylamino-NBD) a protonophore and uncoupler of oxidative phosphorylation in mitochondria. Denisov SS; Kotova EA; Khailova LS; Korshunova GA; Antonenko YN Bioelectrochemistry; 2014 Aug; 98():30-8. PubMed ID: 24650997 [TBL] [Abstract][Full Text] [Related]
22. The mechanism of ion translocation in mitochondria. 2. Active transport and proton pump. Massari S; Azzone GF Eur J Biochem; 1970 Feb; 12(2):310-8. PubMed ID: 5459569 [No Abstract] [Full Text] [Related]
23. Molecular mechanism of uncoupling in brown adipose tissue mitochondria. The non-identity of proton and chloride conducting pathways. Kopecký J; Guerrieri F; Jezek P; Drahota Z; Houstĕk J FEBS Lett; 1984 May; 170(1):186-90. PubMed ID: 6327374 [TBL] [Abstract][Full Text] [Related]
24. [Effect of the cytotoxin of Central Asia cobra venom on the functional state of rat liver mitochondria]. Shkinev AV; Gagel'gans AI; Iukel'son LIa; Tashmukhamedov BA Biull Eksp Biol Med; 1978 Apr; 85(4):422-4. PubMed ID: 656579 [TBL] [Abstract][Full Text] [Related]
25. [Oxidative phosphorylation uncoupling in hyperthyroidism as a result of activating cyclosporin-sensitive pores in the inner mitochondrial membrane by water soluble modulators from rat liver cytoplasm]. Gaĭnutdinov MKh; Konov VV; Ishmukhamedov RN; Zakharova TN; Khalilova MA; Asparov MI Biokhimiia; 1993 May; 58(5):692-9. PubMed ID: 8338882 [TBL] [Abstract][Full Text] [Related]
26. Quantitative correlation between the proton-carrying and respiratory-stimulating properties of uncoupling agents using rat liver mitochondria. Cunarro J; Weiner MW Nature; 1973 Sep; 245(5419):36-7. PubMed ID: 4583125 [No Abstract] [Full Text] [Related]
27. Calcium ion activation of the anion-conducting channel in the rat liver mitochondrial inner membrane. Selwyn MJ; Ng CL; Choo HL FEBS Lett; 1990 Aug; 269(1):205-8. PubMed ID: 1696912 [TBL] [Abstract][Full Text] [Related]
28. A mitochondrial signal peptide from Neurospora crassa increases the permeability of isolated rat liver mitochondria. Sokolove PM; Kinnally KW Arch Biochem Biophys; 1996 Dec; 336(1):69-76. PubMed ID: 8951036 [TBL] [Abstract][Full Text] [Related]
29. Fatty acids induce chloride permeation in rat liver mitochondria by activation of the inner membrane anion channel (IMAC). Schönfeld P; Sayeed I; Bohnensack R; Siemen D J Bioenerg Biomembr; 2004 Jun; 36(3):241-8. PubMed ID: 15337854 [TBL] [Abstract][Full Text] [Related]
31. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane. Kushnareva YE; Sokolove PM Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426 [TBL] [Abstract][Full Text] [Related]
32. [Ion transport and electrical potential of mitochondrial membranes]. Liberman EA; Topaly VP; Tsofina LM; Iasaĭtis AA; Skulachev VP Biokhimiia; 1969; 34(5):1083-7. PubMed ID: 5364621 [No Abstract] [Full Text] [Related]
33. [Cation permeability of liver mitochondrial membranes during Ca+-dependent anoxic damage in vitro]. Bragin EO; Sorokovoĭ VI; Chernikov VP; Kogan EM; Vladimirov IuA Vopr Med Khim; 1977; (3):297-302. PubMed ID: 888394 [TBL] [Abstract][Full Text] [Related]
34. Brown-adipose-tissue mitochondria. The influence of albumin and nucleotides on passive ion permeabilities. Nicholls DG; Lindberg O Eur J Biochem; 1973 Sep; 37(3):523-30. PubMed ID: 4777251 [No Abstract] [Full Text] [Related]
35. Charged and neutral ion carriers through bimolecular phospholipid membranes. Liberman EA; Topaly VP; Silberstein AY Biochim Biophys Acta; 1970; 196(2):221-34. PubMed ID: 5461129 [No Abstract] [Full Text] [Related]
36. Mitochondrial precursor signal peptide induces a unique permeability transition and release of cytochrome c from liver and brain mitochondria. Kushnareva YE; Polster BM; Sokolove PM; Kinnally KW; Fiskum G Arch Biochem Biophys; 2001 Feb; 386(2):251-60. PubMed ID: 11368349 [TBL] [Abstract][Full Text] [Related]
37. Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability. Fernandes MA; Santos MS; Moreno AJ; Duburs G; Oliveira CR; Vicente JA J Biochem Mol Toxicol; 2004; 18(3):162-9. PubMed ID: 15252873 [TBL] [Abstract][Full Text] [Related]
38. Hamster brown-adipose-tissue mitochondria. The chloride permeability of the inner membrane under respiring conditions, the influence of purine nucleotides. Nicholls DG Eur J Biochem; 1974 Dec; 49(3):585-93. PubMed ID: 4442426 [No Abstract] [Full Text] [Related]
39. [Coupled transport of H+, K+ and Cl minus ions across erythrocyte membranes]. Astashkin EI; Antonov VF Fiziol Zh SSSR Im I M Sechenova; 1974 Dec; 60(12):1813-8. PubMed ID: 4452382 [No Abstract] [Full Text] [Related]
40. Studies on ion transport in cells of photosynthetic bacteria. II. Analysis of reversed hydrogen ion change. Kobayashi Y; Nishimura M J Biochem; 1973 Dec; 74(6):1227-32. PubMed ID: 4205459 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]