These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23840299)

  • 1. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.
    Pérot S; Regad L; Reynès C; Spérandio O; Miteva MA; Villoutreix BO; Camproux AC
    PLoS One; 2013; 8(6):e63730. PubMed ID: 23840299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Modeling of Extracellular Ligand Binding Pockets in RosettaGPCR for Conformational Selection.
    Liessmann F; Künze G; Meiler J
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.
    Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA
    BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Kinase Similarity in Small Molecule and Protein Structural Space to Explore the Limits of Multi-Target Screening.
    Schmidt D; Scharf MM; Sydow D; Aßmann E; Martí-Solano M; Keul M; Volkamer A; Kolb P
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33530327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive survey of small-molecule binding pockets in proteins.
    Gao M; Skolnick J
    PLoS Comput Biol; 2013 Oct; 9(10):e1003302. PubMed ID: 24204237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.
    Cerisier N; Regad L; Triki D; Camproux AC; Petitjean M
    J Comput Biol; 2017 Nov; 24(11):1134-1137. PubMed ID: 28570103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space.
    van Linden OP; Kooistra AJ; Leurs R; de Esch IJ; de Graaf C
    J Med Chem; 2014 Jan; 57(2):249-77. PubMed ID: 23941661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time ligand binding pocket database search using local surface descriptors.
    Chikhi R; Sael L; Kihara D
    Proteins; 2010 Jul; 78(9):2007-28. PubMed ID: 20455259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.
    Weill N; Rognan D
    J Chem Inf Model; 2009 Apr; 49(4):1049-62. PubMed ID: 19301874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visually interpretable models of kinase selectivity related features derived from field-based proteochemometrics.
    Subramanian V; Prusis P; Pietilä LO; Xhaard H; Wohlfahrt G
    J Chem Inf Model; 2013 Nov; 53(11):3021-30. PubMed ID: 24116714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential binding pocket on viral oncoprotein HPV16 E6: a promising anti-cancer target for small molecule drug discovery.
    Kolluru S; Momoh R; Lin L; Mallareddy JR; Krstenansky JL
    BMC Mol Cell Biol; 2019 Aug; 20(1):30. PubMed ID: 31387520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LigVoxel: inpainting binding pockets using 3D-convolutional neural networks.
    Skalic M; Varela-Rial A; Jiménez J; Martínez-Rosell G; De Fabritiis G
    Bioinformatics; 2019 Jan; 35(2):243-250. PubMed ID: 29982392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.
    Pérot S; Sperandio O; Miteva MA; Camproux AC; Villoutreix BO
    Drug Discov Today; 2010 Aug; 15(15-16):656-67. PubMed ID: 20685398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function.
    Skolnick J; Gao M; Roy A; Srinivasan B; Zhou H
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1163-70. PubMed ID: 25690787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Modeling and Ligand-Binding Prediction for Analysis of Structure-Unknown and Function-Unknown Proteins Using FORTE Alignment and PoSSuM Pocket Search.
    Tsuchiya Y; Tomii K
    Methods Mol Biol; 2020; 2165():1-11. PubMed ID: 32621216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Importance of the Pocket-estimation Method in Pocket-based Approaches: An Illustration Using Pocket-ligand Classification.
    Caumes G; Borrel A; Abi Hussein H; Camproux AC; Regad L
    Mol Inform; 2017 Sep; 36(9):. PubMed ID: 28452177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Protein Pairs Sharing Common Active Ligands Using Protein Sequence, Structure, and Ligand Similarity.
    Chen YC; Tolbert R; Aronov AM; McGaughey G; Walters WP; Meireles L
    J Chem Inf Model; 2016 Sep; 56(9):1734-45. PubMed ID: 27559831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepDTAF: a deep learning method to predict protein-ligand binding affinity.
    Wang K; Zhou R; Li Y; Li M
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.