BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23840393)

  • 1. Juveniles Are More Resistant to Warming than Adults in 4 Species of Antarctic Marine Invertebrates.
    Peck LS; Souster T; Clark MS
    PLoS One; 2013; 8(6):e66033. PubMed ID: 23840393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation and thermal tolerance in Antarctic marine ectotherms.
    Peck LS; Morley SA; Richard J; Clark MS
    J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multi-omics approach.
    Clark MS; Sommer U; Sihra JK; Thorne MA; Morley SA; King M; Viant MR; Peck LS
    Glob Chang Biol; 2017 Jan; 23(1):318-330. PubMed ID: 27312151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acclimation of the Antarctic sea urchin Sterechinus neumayeri to warmer temperatures involves a modulation of cellular machinery.
    Détrée C; Navarro JM; Figueroa A; Cardenas L
    Mar Environ Res; 2023 Jun; 188():105979. PubMed ID: 37099993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperatures leading to heat escape responses in Antarctic marine ectotherms match acute thermal limits.
    Morley SA; Chu JWF; Peck LS; Bates AE
    Front Physiol; 2022; 13():1077376. PubMed ID: 36620208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic peninsula.
    McClintock JB; Amsler CD; Baker BJ
    Integr Comp Biol; 2010 Dec; 50(6):967-80. PubMed ID: 21558253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of elevated heavy metal concentrations in sediments and benthic marine invertebrates of the western Antarctic Peninsula.
    Webb AL; Hughes KA; Grand MM; Lohan MC; Peck LS
    Sci Total Environ; 2020 Jan; 698():134268. PubMed ID: 31783446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.
    Karelitz SE; Uthicke S; Foo SA; Barker MF; Byrne M; Pecorino D; Lamare MD
    Glob Chang Biol; 2017 Feb; 23(2):657-672. PubMed ID: 27497050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal limits of burrowing capacity are linked to oxygen availability and size in the Antarctic clam Laternula elliptica.
    Peck LS; Morley SA; Pörtner HO; Clark MS
    Oecologia; 2007 Dec; 154(3):479-84. PubMed ID: 17899201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.
    Agüera A; Collard M; Jossart Q; Moreau C; Danis B
    PLoS One; 2015; 10(10):e0140078. PubMed ID: 26451918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.
    Byrne M; Przeslawski R
    Integr Comp Biol; 2013 Oct; 53(4):582-96. PubMed ID: 23697893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delta13C and delta15N shifts in benthic invertebrates exposed to sewage from McMurdo Station, Antarctica.
    Conlan KE; Rau GH; Kvitek RG
    Mar Pollut Bull; 2006 Dec; 52(12):1695-707. PubMed ID: 17046028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations.
    Ho MA; Price C; King CK; Virtue P; Byrne M
    Mar Environ Res; 2013 Sep; 90():136-41. PubMed ID: 23948149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative copper sensitivity between life stages of common subantarctic marine invertebrates.
    Holan JR; King CK; Davis AR
    Environ Toxicol Chem; 2018 Mar; 37(3):807-815. PubMed ID: 29044611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing in a warming intertidal, negative carry over effects of heatwave conditions in development to the pentameral starfish in Parvulastra exigua.
    Balogh R; Byrne M
    Mar Environ Res; 2020 Dec; 162():105083. PubMed ID: 32810717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing the Resilience, Physiological Plasticity and Mechanisms Underlying Upper Temperature Limits of Antarctic Marine Ectotherms.
    Morley SA; Bates AE; Clark MS; Fitzcharles E; Smith R; Stainthorp RE; Peck LS
    Biology (Basel); 2024 Mar; 13(4):. PubMed ID: 38666836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea--Northern Victoria Land).
    Riva SD; Abelmoschi ML; Magi E; Soggia F
    Chemosphere; 2004 Jul; 56(1):59-69. PubMed ID: 15109880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollutant resilience in embryos of the Antarctic sea urchin Sterechinus neumayeri reflects maternal antioxidant status.
    Lister KN; Lamare MD; Burritt DJ
    Aquat Toxicol; 2015 Apr; 161():61-72. PubMed ID: 25667995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large within, and between, species differences in marine cellular responses: Unpredictability in a changing environment.
    Collins M; Peck LS; Clark MS
    Sci Total Environ; 2021 Nov; 794():148594. PubMed ID: 34225140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.