BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23840412)

  • 1. Kinetic proofreading at single molecular level: aminoacylation of tRNA(Ile) and the role of water as an editor.
    Santra M; Bagchi B
    PLoS One; 2013; 8(6):e66112. PubMed ID: 23840412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase.
    Cvetesic N; Bilus M; Gruic-Sovulj I
    J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids.
    Freist W; Cramer F
    Eur J Biochem; 1983 Mar; 131(1):65-80. PubMed ID: 6339236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme structure with two catalytic sites for double-sieve selection of substrate.
    Nureki O; Vassylyev DG; Tateno M; Shimada A; Nakama T; Fukai S; Konno M; Hendrickson TL; Schimmel P; Yokoyama S
    Science; 1998 Apr; 280(5363):578-82. PubMed ID: 9554847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase.
    Dulic M; Perona JJ; Gruic-Sovulj I
    Biochemistry; 2014 Oct; 53(39):6189-98. PubMed ID: 25207837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inorganic pyrophosphate on the pretransfer proofreading in the isoleucyl-tRNA synthetase from Escherichia coli.
    Airas RK
    Eur J Biochem; 1992 Dec; 210(2):451-4. PubMed ID: 1459130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine.
    Fukunaga R; Fukai S; Ishitani R; Nureki O; Yokoyama S
    J Biol Chem; 2004 Feb; 279(9):8396-402. PubMed ID: 14672940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase.
    Fersht AR
    Biochemistry; 1977 Mar; 16(5):1025-30. PubMed ID: 321008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct experimental evidence for kinetic proofreading in amino acylation of tRNAIle.
    Hopfield JJ; Yamane T; Yue V; Coutts SM
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1164-8. PubMed ID: 1063397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine.
    von der Haar F; Cramer F
    Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA determinants for translational editing. Mischarging a minihelix substrate by a tRNA synthetase.
    Nordin BE; Schimmel P
    J Biol Chem; 1999 Mar; 274(11):6835-8. PubMed ID: 10066735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600: discrimination between isoleucine and valine with modulated accuracy.
    Freist W; Cramer F
    Biol Chem Hoppe Seyler; 1987 Mar; 368(3):229-37. PubMed ID: 3297096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational isolation of a sieve for editing in a transfer RNA synthetase.
    Schmidt E; Schimmel P
    Science; 1994 Apr; 264(5156):265-7. PubMed ID: 8146659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoleucyl-tRNA synthetase from bakers' yeast: multistep proofreading in discrimination between isoleucine and valine with modulated accuracy, a scheme for molecular recognition by energy dissipation.
    Freist W; Pardowitz I; Cramer F
    Biochemistry; 1985 Nov; 24(24):7014-23. PubMed ID: 3907707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational separation of two pathways for editing by a class I tRNA synthetase.
    Hendrickson TL; Nomanbhoy TK; de Crécy-Lagard V; Fukai S; Nureki O; Yokoyama S; Schimmel P
    Mol Cell; 2002 Feb; 9(2):353-62. PubMed ID: 11864608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase.
    Fukai S; Nureki O; Sekine S; Shimada A; Tao J; Vassylyev DG; Yokoyama S
    Cell; 2000 Nov; 103(5):793-803. PubMed ID: 11114335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of the aminoacylation of transfer ribonucleic acid: enzyme-product dissociation is not rate limiting.
    Lövgren TN; Pastuszyn A; Loftfield RB
    Biochemistry; 1976 Jun; 15(12):2533-40. PubMed ID: 779825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editing by a tRNA synthetase: DNA aptamer-induced translocation and hydrolysis of a misactivated amino acid.
    Farrow MA; Schimmel P
    Biochemistry; 2001 Apr; 40(14):4478-83. PubMed ID: 11284704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sieves in sequence.
    Fersht AR
    Science; 1998 Apr; 280(5363):541. PubMed ID: 9575099
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.