These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
696 related articles for article (PubMed ID: 23840502)
21. Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress. Xu B; Wang Y; Zhang S; Guo Q; Jin Y; Chen J; Gao Y; Ma H PLoS One; 2017; 12(4):e0175307. PubMed ID: 28388670 [TBL] [Abstract][Full Text] [Related]
22. Transcriptome profiling of Fagopyrum tataricum leaves in response to lead stress. Wang L; Zheng B; Yuan Y; Xu Q; Chen P BMC Plant Biol; 2020 Feb; 20(1):54. PubMed ID: 32013882 [TBL] [Abstract][Full Text] [Related]
23. Identification and differential expression analysis of anthocyanin biosynthetic genes in root-skin color variants of radish (Raphanus sativus L.). Yu R; Du X; Li J; Liu L; Hu C; Yan X; Xia Y; Xu H Genes Genomics; 2020 Apr; 42(4):413-424. PubMed ID: 31997158 [TBL] [Abstract][Full Text] [Related]
24. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer. Xie Y; Zhang W; Wang Y; Xu L; Zhu X; Muleke EM; Liu L Funct Integr Genomics; 2016 Sep; 16(5):529-43. PubMed ID: 27465294 [TBL] [Abstract][Full Text] [Related]
25. Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stress. Li H; Hu T; Amombo E; Fu J BMC Genomics; 2017 Feb; 18(1):145. PubMed ID: 28183269 [TBL] [Abstract][Full Text] [Related]
26. Identification and characterization of novel and conserved microRNAs in radish (Raphanus sativus L.) using high-throughput sequencing. Xu L; Wang Y; Xu Y; Wang L; Zhai L; Zhu X; Gong Y; Ye S; Liu L Plant Sci; 2013 Mar; 201-202():108-14. PubMed ID: 23352408 [TBL] [Abstract][Full Text] [Related]
27. The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution. Gao J; Zhang Y; Lu C; Peng H; Luo M; Li G; Shen Y; Ding H; Zhang Z; Pan G; Lin H Biochem Biophys Res Commun; 2015 Mar; 458(2):287-93. PubMed ID: 25645016 [TBL] [Abstract][Full Text] [Related]
28. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Zhai L; Xu L; Wang Y; Zhu X; Feng H; Li C; Luo X; Everlyne MM; Liu L Sci Rep; 2016 Feb; 6():21652. PubMed ID: 26902837 [TBL] [Abstract][Full Text] [Related]
29. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. Xu Y; Zhu X; Chen Y; Gong Y; Liu L Plant Physiol Biochem; 2013 Sep; 70():269-77. PubMed ID: 23800662 [TBL] [Abstract][Full Text] [Related]
30. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
31. Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.). Wang R; Mei Y; Xu L; Zhu X; Wang Y; Guo J; Liu L Funct Integr Genomics; 2018 Mar; 18(2):225-239. PubMed ID: 29332191 [TBL] [Abstract][Full Text] [Related]
32. Transcriptome and metabolome profiling to elucidate mechanisms underlying the blue discoloration of radish roots during storage. Zhang Y; Zhao X; Ma Y; Zhang L; Jiang Y; Liang H; Wang D Food Chem; 2021 Nov; 362():130076. PubMed ID: 34090048 [TBL] [Abstract][Full Text] [Related]
33. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang S; Wang X; He Q; Liu X; Xu W; Li L; Gao J; Wang F Plant Cell Rep; 2012 Aug; 31(8):1437-47. PubMed ID: 22476438 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome -wide modulation combined with morpho-physiological analyses of Typha orientalis roots in response to lead challenge. Xu X; Chen Q; Mo S; Qian Y; Wu X; Jin Y; Ding H J Hazard Mater; 2020 Feb; 384():121405. PubMed ID: 31629596 [TBL] [Abstract][Full Text] [Related]
36. Comparative transcriptome analysis identifies genes associated with chlorophyll levels and reveals photosynthesis in green flesh of radish taproot. Li YY; Han M; Wang RH; Gao MG PLoS One; 2021; 16(5):e0252031. PubMed ID: 34043661 [TBL] [Abstract][Full Text] [Related]
37. De novo Taproot Transcriptome Sequencing and Analysis of Major Genes Involved in Sucrose Metabolism in Radish (Raphanus sativus L.). Yu R; Xu L; Zhang W; Wang Y; Luo X; Wang R; Zhu X; Xie Y; Karanja B; Liu L Front Plant Sci; 2016; 7():585. PubMed ID: 27242808 [TBL] [Abstract][Full Text] [Related]
38. Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.). Yu R; Wang Y; Xu L; Zhu X; Zhang W; Wang R; Gong Y; Limera C; Liu L BMC Plant Biol; 2015 Feb; 15():30. PubMed ID: 25644462 [TBL] [Abstract][Full Text] [Related]
39. Metabolic and transcriptome analysis of dark red taproot in radish (Raphanus sativus L.). Heng S; Gao C; Cui M; Fu J; Ren S; Xin K; He C; Wang A; Song L; Tang L; Wang B; Zhang X PLoS One; 2022; 17(5):e0268295. PubMed ID: 35536827 [TBL] [Abstract][Full Text] [Related]
40. Transcriptomic analysis of Verbena bonariensis roots in response to cadmium stress. Wang MQ; Bai ZY; Xiao YF; Li Y; Liu QL; Zhang L; Pan YZ; Jiang BB; Zhang F BMC Genomics; 2019 Nov; 20(1):877. PubMed ID: 31747870 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]