These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 23840574)

  • 1. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences.
    Chauhan JS; Rao A; Raghava GP
    PLoS One; 2013; 8(6):e67008. PubMed ID: 23840574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences.
    Chauhan JS; Bhat AH; Raghava GP; Rao A
    PLoS One; 2012; 7(7):e40155. PubMed ID: 22808107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-GlyDE: a two-stage N-linked glycosylation site prediction incorporating gapped dipeptides and pattern-based encoding.
    Pitti T; Chen CT; Lin HN; Choong WK; Hsu WL; Sung TY
    Sci Rep; 2019 Nov; 9(1):15975. PubMed ID: 31685900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O-GlyThr: Prediction of human O-linked threonine glycosites using multi-feature fusion.
    Tang H; Tang Q; Zhang Q; Feng P
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124761. PubMed ID: 37156312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylation site prediction using ensembles of Support Vector Machine classifiers.
    Caragea C; Sinapov J; Silvescu A; Dobbs D; Honavar V
    BMC Bioinformatics; 2007 Nov; 8():438. PubMed ID: 17996106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ProGlycProt: a repository of experimentally characterized prokaryotic glycoproteins.
    Bhat AH; Mondal H; Chauhan JS; Raghava GP; Methi A; Rao A
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D388-93. PubMed ID: 22039152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs.
    Chen YZ; Tang YR; Sheng ZY; Zhang Z
    BMC Bioinformatics; 2008 Feb; 9():101. PubMed ID: 18282281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of N-linked glycosylation sites using position relative features and statistical moments.
    Akmal MA; Rasool N; Khan YD
    PLoS One; 2017; 12(8):e0181966. PubMed ID: 28797096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins.
    Garg A; Raghava GP
    BMC Bioinformatics; 2008 Nov; 9():503. PubMed ID: 19038062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nglyc: A Random Forest Method for Prediction of N-Glycosylation Sites in Eukaryotic Protein Sequence.
    Pugalenthi G; Nithya V; Chou KC; Archunan G
    Protein Pept Lett; 2020; 27(3):178-186. PubMed ID: 31577193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutually exclusive locales for N-linked glycans and disorder in human glycoproteins.
    Goutham S; Kumari I; Pally D; Singh A; Ghosh S; Akhter Y; Bhat R
    Sci Rep; 2020 Apr; 10(1):6040. PubMed ID: 32269229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mannose interacting residues using local composition.
    Agarwal S; Mishra NK; Singh H; Raghava GP
    PLoS One; 2011; 6(9):e24039. PubMed ID: 21931639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of N-linked glycosylation incorporating structural properties and patterns.
    Chuang GY; Boyington JC; Joyce MG; Zhu J; Nabel GJ; Kwong PD; Georgiev I
    Bioinformatics; 2012 Sep; 28(17):2249-55. PubMed ID: 22782545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting sub-cellular localization of tRNA synthetases from their primary structures.
    Panwar B; Raghava GP
    Amino Acids; 2012 May; 42(5):1703-13. PubMed ID: 21400228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes.
    Lam PV; Goldman R; Karagiannis K; Narsule T; Simonyan V; Soika V; Mazumder R
    Genomics Proteomics Bioinformatics; 2013 Apr; 11(2):96-104. PubMed ID: 23459159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced mass spectrometric mapping of the human GalNAc-type O-glycoproteome with SimpleCells.
    Vakhrushev SY; Steentoft C; Vester-Christensen MB; Bennett EP; Clausen H; Levery SB
    Mol Cell Proteomics; 2013 Apr; 12(4):932-44. PubMed ID: 23399548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico approaches for designing highly effective cell penetrating peptides.
    Gautam A; Chaudhary K; Kumar R; Sharma A; Kapoor P; Tyagi A; ; Raghava GP
    J Transl Med; 2013 Mar; 11():74. PubMed ID: 23517638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.
    Panwar B; Gupta S; Raghava GP
    BMC Bioinformatics; 2013 Feb; 14():44. PubMed ID: 23387468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NeuroPIpred: a tool to predict, design and scan insect neuropeptides.
    Agrawal P; Kumar S; Singh A; Raghava GPS; Singh IK
    Sci Rep; 2019 Mar; 9(1):5129. PubMed ID: 30914676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.