BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23840735)

  • 1. Towards ligand docking including explicit interface water molecules.
    Lemmon G; Meiler J
    PLoS One; 2013; 8(6):e67536. PubMed ID: 23840735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.
    Li L; Xu W; Lü Q
    J Mol Model; 2015 Nov; 21(11):294. PubMed ID: 26515196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular docking with ligand attached water molecules.
    Lie MA; Thomsen R; Pedersen CN; Schiøtt B; Christensen MH
    J Chem Inf Model; 2011 Apr; 51(4):909-17. PubMed ID: 21452852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand.
    DeLuca S; Khar K; Meiler J
    PLoS One; 2015; 10(7):e0132508. PubMed ID: 26207742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The particle concept: placing discrete water molecules during protein-ligand docking predictions.
    Rarey M; Kramer B; Lengauer T
    Proteins; 1999 Jan; 34(1):17-28. PubMed ID: 10336380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PlaceWaters: Real-time, explicit interface water sampling during Rosetta ligand docking.
    Smith ST; Shub L; Meiler J
    PLoS One; 2022; 17(5):e0269072. PubMed ID: 35639743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling water molecules in protein-ligand docking using GOLD.
    Verdonk ML; Chessari G; Cole JC; Hartshorn MJ; Murray CW; Nissink JW; Taylor RD; Taylor R
    J Med Chem; 2005 Oct; 48(20):6504-15. PubMed ID: 16190776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HarmonyDOCK: the structural analysis of poses in protein-ligand docking.
    Plewczynski D; Philips A; Von Grotthuss M; Rychlewski L; Ginalski K
    J Comput Biol; 2014 Mar; 21(3):247-56. PubMed ID: 21091053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S4MPLE--sampler for multiple protein-ligand entities: simultaneous docking of several entities.
    Hoffer L; Horvath D
    J Chem Inf Model; 2013 Jan; 53(1):88-102. PubMed ID: 23215156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y; Yang CY; Wang S
    J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.
    Fornabaio M; Spyrakis F; Mozzarelli A; Cozzini P; Abraham DJ; Kellogg GE
    J Med Chem; 2004 Aug; 47(18):4507-16. PubMed ID: 15317462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking discrimination.
    Pavlovicz RE; Park H; DiMaio F
    PLoS Comput Biol; 2020 Sep; 16(9):e1008103. PubMed ID: 32956350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-protein docking with water molecules.
    Roberts BC; Mancera RL
    J Chem Inf Model; 2008 Feb; 48(2):397-408. PubMed ID: 18211049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.