These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 23840819)
1. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis. Janssens L; Stoks R PLoS One; 2013; 8(6):e68107. PubMed ID: 23840819 [TBL] [Abstract][Full Text] [Related]
2. Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: a comparison between latitudes. Janssens L; Dinh Van K; Stoks R Aquat Toxicol; 2014 Mar; 148():74-82. PubMed ID: 24463491 [TBL] [Abstract][Full Text] [Related]
3. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly. Dinh KV; Janssens L; Therry L; Bervoets L; Bonte D; Stoks R Environ Pollut; 2016 Nov; 218():634-643. PubMed ID: 27476426 [TBL] [Abstract][Full Text] [Related]
4. Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect. Van Dievel M; Janssens L; Stoks R Aquat Toxicol; 2019 Jul; 212():205-213. PubMed ID: 31132738 [TBL] [Abstract][Full Text] [Related]
5. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours. Dinh Van K; Janssens L; Debecker S; Stoks R Aquat Toxicol; 2014 Jul; 152():215-21. PubMed ID: 24792152 [TBL] [Abstract][Full Text] [Related]
6. Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide. Janssens L; Stoks R Environ Pollut; 2017 Jul; 226():79-88. PubMed ID: 28411497 [TBL] [Abstract][Full Text] [Related]
7. Exposure to a widespread non-pathogenic bacterium magnifies sublethal pesticide effects in the damselfly Enallagma cyathigerum: from the suborganismal level to fitness-related traits. Janssens L; Stoks R Environ Pollut; 2013 Jun; 177():143-9. PubMed ID: 23500051 [TBL] [Abstract][Full Text] [Related]
8. Urbanisation shapes behavioural responses to a pesticide. Tüzün N; Debecker S; Op de Beeck L; Stoks R Aquat Toxicol; 2015 Jun; 163():81-8. PubMed ID: 25863029 [TBL] [Abstract][Full Text] [Related]
9. Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model. Delnat V; Janssens L; Stoks R Aquat Toxicol; 2019 Jun; 211():38-45. PubMed ID: 30921756 [TBL] [Abstract][Full Text] [Related]
10. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect. Arambourou H; Stoks R Aquat Toxicol; 2015 Oct; 167():38-45. PubMed ID: 26261878 [TBL] [Abstract][Full Text] [Related]
11. Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient. Verheyen J; Cuypers K; Stoks R Environ Pollut; 2023 Jun; 326():121438. PubMed ID: 36963457 [TBL] [Abstract][Full Text] [Related]
12. Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly. Sniegula S; Janssens L; Stoks R Aquat Toxicol; 2017 May; 186():113-122. PubMed ID: 28282618 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effects between pesticide stress and predator cues: conflicting results from life history and physiology in the damselfly Enallagma cyathigerum. Janssens L; Stoks R Aquat Toxicol; 2013 May; 132-133():92-9. PubMed ID: 23474318 [TBL] [Abstract][Full Text] [Related]
14. Combined effects of larval exposure to a heat wave and chlorpyrifos in northern and southern populations of the damselfly Ischnura elegans. Arambourou H; Stoks R Chemosphere; 2015 Jun; 128():148-54. PubMed ID: 25698293 [TBL] [Abstract][Full Text] [Related]
15. Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate. Verheyen J; Stoks R Chemosphere; 2020 Mar; 243():125369. PubMed ID: 31765902 [TBL] [Abstract][Full Text] [Related]
16. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology. Verheyen J; Stoks R Environ Pollut; 2019 May; 248():209-218. PubMed ID: 30798022 [TBL] [Abstract][Full Text] [Related]
17. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. Op de Beeck L; Verheyen J; Stoks R Environ Pollut; 2018 Feb; 233():226-234. PubMed ID: 29096295 [TBL] [Abstract][Full Text] [Related]
18. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect. Op de Beeck L; Verheyen J; Stoks R Environ Pollut; 2017 May; 224():714-721. PubMed ID: 28040340 [TBL] [Abstract][Full Text] [Related]