BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23841059)

  • 1. Microwave-assisted surface modification of metallocene polyethylene for improving blood compatibility.
    Mohandas H; Sivakumar G; Kasi P; Jaganathan SK; Supriyanto E
    Biomed Res Int; 2013; 2013():253473. PubMed ID: 23841059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications.
    Balaji A; Jaganathan SK; Supriyanto E; Muhamad II; Khudzari AZ
    Int J Nanomedicine; 2015; 10():5909-23. PubMed ID: 26425089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced blood compatibility of metallocene polyethylene subjected to hydrochloric acid treatment for cardiovascular implants.
    Jaganathan SK; Mohandas H; Sivakumar G; Kasi P; Sudheer T; Avineri Veetil S; Murugesan S; Supriyanto E
    Biomed Res Int; 2014; 2014():963149. PubMed ID: 24955370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and blood compatibility assessment of electrospun polyvinyl alcohol blended with metallocene polyethylene and plectranthus amboinicus (PVA/mPE/PA) for bone tissue engineering.
    Qi J; Zhang H; Wang Y; Mani MP; Jaganathan SK
    Int J Nanomedicine; 2018; 13():2777-2788. PubMed ID: 29785105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV induced surface modification on improving the cytocompatibility of metallocene polyethylene.
    Jaganathan SK; Prasath MM
    An Acad Bras Cienc; 2018; 90(1):195-204. PubMed ID: 29641759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the potential of nitric acid as a surface modifier for improving the hemocompatibility of metallocene polyethylene for blood contacting devices.
    Vellayappan MV; Jaganathan SK; Muhamad II
    PeerJ; 2016; 4():e1388. PubMed ID: 26819837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-methoxyethylacrylate modified polysulfone membrane and its blood compatibility.
    Tian X; Qiu YR
    Arch Biochem Biophys; 2017 Oct; 631():49-57. PubMed ID: 28764891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of anticoagulation layer on titanium surface by sequential immobilization of poly (ethylene glycol) and albumin.
    Pan CJ; Hou YH; Zhang BB; Zhang LC
    Biomed Mater Eng; 2014; 24(1):781-7. PubMed ID: 24211964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications.
    Ayyar M; Mani MP; Jaganathan SK; Rathanasamy R
    Biomed Tech (Berl); 2018 Jun; 63(3):245-253. PubMed ID: 28678733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin.
    Pan C; Hu Y; Hou Y; Liu T; Lin Y; Ye W; Hou Y; Gong T
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):438-449. PubMed ID: 27770914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-methoxyethylacrylate modified polyurethane membrane and its blood compatibility.
    Tian X; Qiu YR
    Prog Biophys Mol Biol; 2019 Nov; 148():39-46. PubMed ID: 29079209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood compatibility assessments of electrospun polyurethane nanocomposites blended with megni oil for tissue engineering applications.
    Jaganathan SK; Mani MP; Supriyanto E
    An Acad Bras Cienc; 2019 Jun; 91(2):e20190018. PubMed ID: 31241710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved anticoagulation of titanium by sequential immobilization of oligo(ethylene glycol) and 2-methacryloyloxyethyl phosphorylcholine.
    Pan CJ; Hou YH; Liu HQ; Ding HY; Dong YX
    Colloids Surf B Biointerfaces; 2013 Dec; 112():508-12. PubMed ID: 23972476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface, thermal and hemocompatible properties of novel single stage electrospun nanocomposites comprising polyurethane blended with bio oilTM.
    Ayyar M; Mani MP; Jaganathan SK; Rathinasamy R; Khudzari AZ; Krishnasamy NP
    An Acad Bras Cienc; 2017; 89(3 Suppl):2411-2422. PubMed ID: 29091109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine.
    Cao J; Chen YW; Wang X; Luo XL
    J Biomed Mater Res A; 2011 Jun; 97(4):472-9. PubMed ID: 21495169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hemocompatibility of the modified polysulfone membrane with 4-(chloromethyl)benzoic acid and sulfonated hydroxypropyl chitosan.
    Yan S; Tu MM; Qiu YR
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110769. PubMed ID: 31918157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.
    Abednejad AS; Amoabediny G; Ghaee A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():443-50. PubMed ID: 25063140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.
    Zhu L; Song H; Wang J; Xue L
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():159-166. PubMed ID: 28254281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.