BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23841082)

  • 1. Noninvasive measurement of murine hepatic acetyl-CoA ¹³C-enrichment following overnight feeding with ¹³C-enriched fructose and glucose.
    Carvalho F; Duarte J; Simoes AR; Cruz PF; Jones JG
    Biomed Res Int; 2013; 2013():638085. PubMed ID: 23841082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fraction of hepatic cytosolic acetyl-CoA derived from glucose in vivo: relation to PDH phosphorylation state.
    Kaempfer S; Blackham M; Christiansen M; Wu K; Cesar D; Vary T; Hellerstein MK
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E865-75. PubMed ID: 2058663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate.
    Zhao S; Jang C; Liu J; Uehara K; Gilbert M; Izzo L; Zeng X; Trefely S; Fernandez S; Carrer A; Miller KD; Schug ZT; Snyder NW; Gade TP; Titchenell PM; Rabinowitz JD; Wellen KE
    Nature; 2020 Mar; 579(7800):586-591. PubMed ID: 32214246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of mass isotopomer distributions in secreted lipids to sample lipogenic acetyl-CoA pool in vivo in humans.
    Hellerstein MK; Kletke C; Kaempfer S; Wu K; Shackleton CH
    Am J Physiol; 1991 Oct; 261(4 Pt 1):E479-86. PubMed ID: 1928339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method for quantifying de novo lipogenesis rate and substrate selection in cell cultures by
    Patrício JS; Dias-Pedroso D; Carvalho RA; Viera HLA; Jones JG
    NMR Biomed; 2022 Mar; 35(3):e4648. PubMed ID: 34850989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zonation of labeling of lipogenic acetyl-CoA across the liver: implications for studies of lipogenesis by mass isotopomer analysis.
    Bederman IR; Reszko AE; Kasumov T; David F; Wasserman DH; Kelleher JK; Brunengraber H
    J Biol Chem; 2004 Oct; 279(41):43207-16. PubMed ID: 15284242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro modeling of fatty acid synthesis under conditions simulating the zonation of lipogenic [13C]acetyl-CoA enrichment in the liver.
    Bederman IR; Kasumov T; Reszko AE; David F; Brunengraber H; Kelleher JK
    J Biol Chem; 2004 Oct; 279(41):43217-26. PubMed ID: 15284243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of mitochondria-generated acetyl-CoA by pyruvate dehydrogenase complex downregulates gene expression in the hepatic de novo lipogenic pathway.
    Mahmood S; Birkaya B; Rideout TC; Patel MS
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E117-27. PubMed ID: 27166281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of glucose hydrogens via acetyl-CoA, malonyl-CoA, and NADPH to fatty acids during de novo lipogenesis.
    Belew GD; Silva J; Rito J; Tavares L; Viegas I; Teixeira J; Oliveira PJ; Macedo MP; Jones JG
    J Lipid Res; 2019 Dec; 60(12):2050-2056. PubMed ID: 31575642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampling the lipogenic hepatic acetyl-CoA pool in vivo in the rat. Comparison of xenobiotic probe to values predicted from isotopomeric distribution in circulating lipids and measurement of lipogenesis and acetyl-CoA dilution.
    Hellerstein MK; Wu K; Kaempfer S; Kletke C; Shackleton CH
    J Biol Chem; 1991 Jun; 266(17):10912-9. PubMed ID: 2040608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Liver Glycogen and Triglyceride NMR Isotopomer Analyses Provides a Comprehensive Coverage of Hepatic Glucose and Fructose Metabolism.
    Viegas I; Di Nunzio G; Belew GD; Torres AN; Silva JG; Perpétuo L; Barosa C; Tavares LC; Jones JG
    Metabolites; 2022 Nov; 12(11):. PubMed ID: 36422282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources of hepatic glycogen synthesis in mice fed with glucose or fructose as the sole dietary carbohydrate.
    Jarak I; Barosa C; Martins FO; Silva JCP; Santos C; Belew GD; Rito J; Viegas I; Teixeira J; Oliveira PJ; Jones JG
    Magn Reson Med; 2019 Jan; 81(1):639-644. PubMed ID: 30058123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of [U-13C]glucose and 2H2O for quantification of hepatic glucose production and gluconeogenesis.
    Perdigoto R; Rodrigues TB; Furtado AL; Porto A; Geraldes CF; Jones JG
    NMR Biomed; 2003 Jun; 16(4):189-98. PubMed ID: 14558117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating pentose phosphate pathway activity from the analysis of hepatic glycogen
    Belew GD; Di Nunzio G; Tavares L; Silva JG; Torres AN; Jones JG
    Magn Reson Med; 2020 Nov; 84(5):2765-2771. PubMed ID: 32301167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high-fructose diet on lipogenic enzymes and their substrate and effector levels in diabetic rats.
    Fukuda H; Iritani N; Tanaka T
    J Nutr Sci Vitaminol (Tokyo); 1983 Dec; 29(6):691-9. PubMed ID: 6144742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fructose on hepatic synthesis of fatty acids.
    Zakim D
    Acta Med Scand Suppl; 1972; 542():205-14. PubMed ID: 4146849
    [No Abstract]   [Full Text] [Related]  

  • 17. Hormonal regulation of adipose-tissue acetyl-Coenzyme A carboxylase by changes in the polymeric state of the enzyme. The role of long-chain fatty acyl-Coenzyme A thioesters and citrate.
    Halestrap AP; Denton RM
    Biochem J; 1974 Aug; 142(2):365-77. PubMed ID: 4155293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo glucose contribution to glutamate synthesis is maintained while its contribution to acetyl CoA is lowered in adult mice fed a diet with a high fat:carbohydrate ratio.
    Pascual M; Jahoor F; Reeds PJ
    J Nutr; 1998 Apr; 128(4):733-9. PubMed ID: 9521636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in fructose-induced production of glucose in the rat liver following partial hepatectomy.
    Moriyama M; Nishisako M; Ueda J; Kannan Y; Ohta M; Sugano T
    Arch Biochem Biophys; 1999 Nov; 371(1):53-62. PubMed ID: 10525289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetyl-CoA from inflammation-induced fatty acids oxidation promotes hepatic malate-aspartate shuttle activity and glycolysis.
    Wang T; Yao W; Li J; He Q; Shao Y; Huang F
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E496-E510. PubMed ID: 29763372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.