BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 23841345)

  • 1. Influence of temperature on retention parameter of bile acids in normal phase thin-layer chromatography: the role of steroid skeleton.
    Posa M; Sebenji A; Trifunović J
    Acta Chim Slov; 2013; 60(1):151-8. PubMed ID: 23841345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSPR study of the effect of steroidal hydroxy and oxo substituents on the critical micellar concentration of bile acids.
    Poša M
    Steroids; 2011 Jan; 76(1-2):85-93. PubMed ID: 20869377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination and importance of temperature dependence of retention coefficient (RPHPLC) in QSAR model of nitrazepams' partition coefficient in bile acid micelles.
    Posa M; Pilipović A; Lalić M; Popović J
    Talanta; 2011 Feb; 83(5):1634-42. PubMed ID: 21238762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemometric and conformational approach to the analysis of the aggregation capabilities in a set of bile salts of the allo and normal series.
    Poša M; Sebenji A
    J Pharm Biomed Anal; 2016 Mar; 121():316-324. PubMed ID: 26746785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of number-average aggregation numbers of bile salts micelles with a special emphasis on their oxo derivatives-the effect of the steroid skeleton.
    Poša M; Sebenji A
    Biochim Biophys Acta; 2014 Mar; 1840(3):1072-82. PubMed ID: 24246958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of NaCl on hydrophobicity of selected, pharmacologically active bile acids expressed with chromatographic retention index and critical micellar concentration.
    Posa M; Pilipović A; Lalić M
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):336-43. PubMed ID: 20702073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Property Relationships in Sodium Muricholate Derivative (Bile Salts) Micellization: The Effect of Conformation of Steroid Skeleton on Hydrophobicity and Micelle Formation-Pattern Recognition and Potential Membranoprotective Properties.
    Poša M; Popović K
    Mol Pharm; 2017 Oct; 14(10):3343-3355. PubMed ID: 28863265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobicity and retention coefficient of selected bile Acid oxo derivatives.
    Poša M; Pilipović MA; Popović J
    Acta Chim Slov; 2010 Dec; 57(4):828-35. PubMed ID: 24061884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wittig reaction (with ethylidene triphenylphosphorane) of oxo-hydroxy derivatives of 5β-cholanic acid: Hydrophobicity, haemolytic potential and capacity of derived ethylidene derivatives for solubilisation of cholesterol.
    Poša M; Bjedov S; Sebenji A; Sakač M
    Steroids; 2014 Aug; 86():16-25. PubMed ID: 24819990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of reversed-phase chromatographic parameters in predicting biopharmaceutical and pharmacokinetic descriptors on the group of androgen derivatives.
    Pilipović A; Ajduković J; Đurendić E; Sakač M; Poša M
    Eur J Pharm Sci; 2017 Aug; 106():166-176. PubMed ID: 28571782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention and separation studies of cholesterol and bile acids using thermostated thin-layer chromatography.
    Zarzycki PK; Wierzbowska M; Lamparczyk H
    J Chromatogr A; 1999 Oct; 857(1-2):255-62. PubMed ID: 10536844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of selected topological indices to predict retention parameters of selected bile acids separated on modified TLC plates.
    Dołowy M
    Acta Pol Pharm; 2008; 65(1):51-7. PubMed ID: 18536173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the lipophilicity of bile acids and their derivatives by thin-layer chromatography and principal component analysis.
    Sârbu C; Kuhajda K; Kevresan S
    J Chromatogr A; 2001 May; 917(1-2):361-6. PubMed ID: 11403489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical properties of bile acids. V. Interaction with concentrated sulfuric acid.
    Fini A; Fazio G; Tonelli D; Roda A; Zuman P
    Farmaco; 1992 May; 47(5 Suppl):741-52. PubMed ID: 1524623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of chromatographic lipophilicity of bile acids and their derivatives by reversed-phase thin layer chromatography.
    Onişor C; Poša M; Kevrešan S; Kuhajda K; Sârbu C
    J Sep Sci; 2010 Oct; 33(20):3110-8. PubMed ID: 20824659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and prediction (correction) of partition coefficients of bile acids and their derivatives by multivariate regression methods.
    Sârbu C; Onişor C; Posa M; Kevresan S; Kuhajda K
    Talanta; 2008 May; 75(3):651-7. PubMed ID: 18585127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing of the centers for adsorption of bile acids on a silica surface.
    Belyakova LA; Besarab LN; Roik NV; Lyashenko DY; Vlasova NN; Golovkova LP; Chuiko AA
    J Colloid Interface Sci; 2006 Feb; 294(1):11-20. PubMed ID: 16085079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile acids and their oxo derivatives: environmentally safe materials for drug design and delivery.
    Trifunović J; Borčić V; Vukmirović S; Vasović V; Mikov M
    Drug Chem Toxicol; 2017 Oct; 40(4):397-405. PubMed ID: 27780364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HPTLC chromatography of androstene derivates. Application of normal phase thin-layer chromatographic retention data in QSAR studies.
    Perisić-Janjić NU; Djaković-Sekulić TLj; Stojanović SZ; Penov-Gasi KM
    Steroids; 2005 Mar; 70(3):137-44. PubMed ID: 15763591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the interaction of structurally similar bioactive compounds by thin-layer chromatography.
    Farkas O; Gere-Pászti E; Forgács E
    J Chromatogr Sci; 2003 Apr; 41(4):169-72. PubMed ID: 12803801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.