These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23841461)

  • 1. Averaged spacing and 2-d organization of collagen fibrils in the posterior cornea of the rabbit eye assessed by transmission electron microscopy.
    Doughty MJ
    Curr Eye Res; 2014 Apr; 39(4):329-39. PubMed ID: 23841461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of collagen fibril spacing in relation to selected region of interest (ROI) on electron micrographs--application to the mammalian corneal stroma.
    Doughty MJ
    Microsc Res Tech; 2012 Apr; 75(4):474-83. PubMed ID: 21919128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution and reproducibility of measures of the diameter of small collagen fibrils by transmission electron microscopy--application to the rabbit corneal stroma.
    Doughty MJ; Bergmanson JP
    Micron; 2005; 36(4):331-43. PubMed ID: 15857772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the apparent intra- and inter-sample variability in the collagen fibril diameter in the posterior corneal stroma of rabbits. A transmission electron microscopy study.
    Doughty MJ; Bergmanson JP
    Ophthalmic Res; 2006; 38(6):335-42. PubMed ID: 17047410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods.
    Hirsch M; Prenant G; Renard G
    Exp Eye Res; 2001 Feb; 72(2):123-35. PubMed ID: 11161728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibril characteristics at the corneo-scleral boundary and rabbit corneal stromal swelling.
    Doughty MJ; Bergmanson JP
    Clin Exp Optom; 2004 Mar; 87(2):81-92. PubMed ID: 15040774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Options for determination of 2-D distribution of collagen fibrils in transmission electron micrographs--application to the mammalian corneal stroma.
    Doughty MJ
    Microsc Res Tech; 2011 Feb; 74(2):184-95. PubMed ID: 20564523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea.
    Almubrad T; Akhtar S
    Mol Vis; 2011; 17():2283-91. PubMed ID: 21921979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchoring fibrils form a complex network in human and rabbit cornea.
    Gipson IK; Spurr-Michaud SJ; Tisdale AS
    Invest Ophthalmol Vis Sci; 1987 Feb; 28(2):212-20. PubMed ID: 8591898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction and transmission electron microscopy of Morquio syndrome type A cornea: a structural analysis.
    Rawe IM; Leonard DW; Meek KM; Zabel RW
    Cornea; 1997 May; 16(3):369-76. PubMed ID: 9143815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of 100 nm periodic fibrils (type VI collagen) in human infant corneal stroma.
    Nakamura M; Kobayashi M; Hirano K; Kobayashi K; Hoshino T; Awaya S
    Jpn J Ophthalmol; 1992; 36(4):458-64. PubMed ID: 1283889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI.
    Alroy J; Haskins M; Birk DE
    Exp Eye Res; 1999 May; 68(5):523-30. PubMed ID: 10328965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma.
    Müller LJ; Pels E; Schurmans LR; Vrensen GF
    Exp Eye Res; 2004 Mar; 78(3):493-501. PubMed ID: 15106928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal alterations in the collagen fibrillar array during the onset of transparency in the avian cornea.
    Connon CJ; Meek KM; Kinoshita S; Quantock AJ
    Exp Eye Res; 2004 May; 78(5):909-15. PubMed ID: 15051472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure in anterior and posterior stroma of perfused human and rabbit corneas. Relation to transparency.
    Freund DE; McCally RL; Farrell RA; Cristol SM; L'Hernault NL; Edelhauser HF
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1508-23. PubMed ID: 7601631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of corneal scar tissue: an X-ray diffraction study.
    Rawe IM; Meek KM; Leonard DW; Takahashi T; Cintron C
    Biophys J; 1994 Oct; 67(4):1743-8. PubMed ID: 7819506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of dermatopontin in the stromal organization of the cornea.
    Cooper LJ; Bentley AJ; Nieduszynski IA; Talabani S; Thomson A; Utani A; Shinkai H; Fullwood NJ; Brown GM
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3303-10. PubMed ID: 16877395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal model with structural similarity to human corneal collagen fibrillar arrangement.
    Subasinghe SK; Ogbuehi KC; Mitchell L; Dias GJ
    Anat Sci Int; 2021 Mar; 96(2):286-293. PubMed ID: 33392925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine structure of the developing avian corneal stroma as revealed by quick-freeze, deep-etch electron microscopy.
    Hirsch M; Noske W; Prenant G; Renard G
    Exp Eye Res; 1999 Sep; 69(3):267-77. PubMed ID: 10471335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of processing methods for transmission electron microscopy on corneal collagen fibrils diameter and spacing.
    Akhtar S
    Microsc Res Tech; 2012 Oct; 75(10):1420-4. PubMed ID: 22648981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.