BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23841539)

  • 1. The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution.
    Xu L; Law SR; Murcha MW; Whelan J; Carrie C
    BMC Plant Biol; 2013 Jul; 13():100. PubMed ID: 23841539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana.
    Carrie C; Murcha MW; Kuehn K; Duncan O; Barthet M; Smith PM; Eubel H; Meyer E; Day DA; Millar AH; Whelan J
    FEBS Lett; 2008 Sep; 582(20):3073-9. PubMed ID: 18703057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition, conservation, and loss of dual-targeted proteins in land plants.
    Xu L; Carrie C; Law SR; Murcha MW; Whelan J
    Plant Physiol; 2013 Feb; 161(2):644-62. PubMed ID: 23257241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light.
    Michalecka AM; Svensson AS; Johansson FI; Agius SC; Johanson U; Brennicke A; Binder S; Rasmusson AG
    Plant Physiol; 2003 Oct; 133(2):642-52. PubMed ID: 12972666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases.
    Hao MS; Rasmusson AG
    Physiol Plant; 2016 Jul; 157(3):338-51. PubMed ID: 27079180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants.
    Liu YJ; Han XM; Ren LL; Yang HL; Zeng QY
    Plant Physiol; 2013 Feb; 161(2):773-86. PubMed ID: 23188805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of functional complexity within the β-amylase gene family in land plants.
    Thalmann M; Coiro M; Meier T; Wicker T; Zeeman SC; Santelia D
    BMC Evol Biol; 2019 Feb; 19(1):66. PubMed ID: 30819112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land.
    Caputi L; Malnoy M; Goremykin V; Nikiforova S; Martens S
    Plant J; 2012 Mar; 69(6):1030-42. PubMed ID: 22077743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids.
    Richter U; Kiessling J; Hedtke B; Decker E; Reski R; Börner T; Weihe A
    Gene; 2002 May; 290(1-2):95-105. PubMed ID: 12062804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of plant phage-type RNA polymerases: the genome of the basal angiosperm Nuphar advena encodes two mitochondrial and one plastid phage-type RNA polymerases.
    Yin C; Richter U; Börner T; Weihe A
    BMC Evol Biol; 2010 Dec; 10():379. PubMed ID: 21134269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria.
    Rasmusson AG; Svensson AS; Knoop V; Grohmann L; Brennicke A
    Plant J; 1999 Oct; 20(1):79-87. PubMed ID: 10571867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plants utilize a highly conserved system for repair of NADH and NADPH hydrates.
    Niehaus TD; Richardson LG; Gidda SK; ElBadawi-Sidhu M; Meissen JK; Mullen RT; Fiehn O; Hanson AD
    Plant Physiol; 2014 May; 165(1):52-61. PubMed ID: 24599492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread dual targeting of proteins in land plants: when, where, how and why.
    Carrie C; Whelan J
    Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23733068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of two lineages of peroxisomal (Type I) 3-ketoacyl-CoA thiolases in land plants, specialization of the genes in Brassicaceae, and characterization of their expression in Arabidopsis thaliana.
    Wiszniewski AA; Smith SM; Bussell JD
    J Exp Bot; 2012 Oct; 63(17):6093-103. PubMed ID: 23066143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonreciprocal complementation of KNOX gene function in land plants.
    Frangedakis E; Saint-Marcoux D; Moody LA; Rabbinowitsch E; Langdale JA
    New Phytol; 2017 Oct; 216(2):591-604. PubMed ID: 27886385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin and evolution of the ALOG proteins, members of a plant-specific transcription factor family, in land plants.
    Naramoto S; Hata Y; Kyozuka J
    J Plant Res; 2020 May; 133(3):323-329. PubMed ID: 32052256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary history of the cobalamin-independent methionine synthase gene family across the land plants.
    Rody HVS; Oliveira LO
    Mol Phylogenet Evol; 2018 Mar; 120():33-42. PubMed ID: 29222062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and divergence of SBP-box genes in land plants.
    Zhang SD; Ling LZ; Yi TS
    BMC Genomics; 2015 Oct; 16():787. PubMed ID: 26467431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of land plant cilia.
    Hodges ME; Wickstead B; Gull K; Langdale JA
    New Phytol; 2012 Aug; 195(3):526-540. PubMed ID: 22691130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis.
    Li F; Mei F; Zhang Y; Li S; Kang Z; Mao H
    BMC Plant Biol; 2020 Dec; 20(1):558. PubMed ID: 33302868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.