These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 23841679)

  • 1. A constrained constructive optimization model of branching arteriolar networks in rat skeletal muscle.
    Bao Y; Frisbee AC; Frisbee JC; Goldman D
    J Appl Physiol (1985); 2024 Jun; 136(6):1303-1321. PubMed ID: 38601995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional, discrete-continuum model of blood pressure in microvascular networks.
    Sweeney PW; Walsh C; Walker-Samuel S; Shipley RJ
    Int J Numer Method Biomed Eng; 2024 Aug; 40(8):e3832. PubMed ID: 38770788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AngioMT: An in silico platform for digital sensing of oxygen transport through heterogenous microvascular networks.
    Mathur T; Tronolone JJ; Jain A
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of theoretical modeling in microcirculation research.
    Secomb TW; Beard DA; Frisbee JC; Smith NP; Pries AR
    Microcirculation; 2008 Nov; 15(8):693-8. PubMed ID: 18946803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary-Mitochondrial Oxygen Transport in Muscle: Paradigm Shifts.
    Poole DC; Musch TI
    Function (Oxf); 2023; 4(3):zqad013. PubMed ID: 37168497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vivo full-field measurement of microcirculatory blood flow velocity based on intelligent object identification.
    Ye F; Yin S; Li M; Li Y; Zhong J
    J Biomed Opt; 2020 Jan; 25(1):1-11. PubMed ID: 31970945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to label, image, and analyze the complex structural architectures of microvascular networks.
    Corliss BA; Mathews C; Doty R; Rohde G; Peirce SM
    Microcirculation; 2019 Jul; 26(5):e12520. PubMed ID: 30548558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 1: Theoretical Models.
    Lücker A; Secomb TW; Weber B; Jenny P
    Front Physiol; 2018; 9():420. PubMed ID: 29755365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of microvascular morphological measures for skeletal muscle tissue oxygenation by image-based modelling in three dimensions.
    Zeller-Plumhoff B; Daly KR; Clough GF; Schneider P; Roose T
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 29021164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-based modelling of skeletal muscle oxygenation.
    Zeller-Plumhoff B; Roose T; Clough GF; Schneider P
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28202595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Model for Tumor Oxygenation Applied to Clinical Data on Breast Tumor Hemoglobin Concentrations Suggests Vascular Dilatation and Compression.
    Welter M; Fredrich T; Rinneberg H; Rieger H
    PLoS One; 2016; 11(8):e0161267. PubMed ID: 27547939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior.
    Miller MA; Weissleder R
    Adv Drug Deliv Rev; 2017 Apr; 113():61-86. PubMed ID: 27266447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative models of vascular remodeling during tumor growth.
    Rieger H; Welter M
    Wiley Interdiscip Rev Syst Biol Med; 2015; 7(3):113-29. PubMed ID: 25808551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of generated parallel capillary arrays to three-dimensional reconstructed capillary networks in modeling oxygen transport in discrete microvascular volumes.
    Fraser GM; Goldman D; Ellis CG
    Microcirculation; 2013 Nov; 20(8):748-63. PubMed ID: 23841679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping 3-D functional capillary geometry in rat skeletal muscle in vivo.
    Fraser GM; Milkovich S; Goldman D; Ellis CG
    Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H654-64. PubMed ID: 22140042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular flow modeling using in vivo hemodynamic measurements in reconstructed 3D capillary networks.
    Fraser GM; Goldman D; Ellis CG
    Microcirculation; 2012 Aug; 19(6):510-20. PubMed ID: 22429386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-compartment model of oxygen transport in skeletal muscle using continuously distributed capillaries.
    Afas KC; Vijay R; Goldman D
    Math Biosci; 2021 Mar; 333():108535. PubMed ID: 33460672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical models of microvascular oxygen transport to tissue.
    Goldman D
    Microcirculation; 2008 Nov; 15(8):795-811. PubMed ID: 18608981
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.