These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23841777)

  • 1. Sequence-dependent base-stacking stabilities guide tRNA folding energy landscapes.
    Li R; Ge HW; Cho SS
    J Phys Chem B; 2013 Oct; 117(42):12943-52. PubMed ID: 23841777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
    Chakraborty D; Collepardo-Guevara R; Wales DJ
    J Am Chem Soc; 2014 Dec; 136(52):18052-61. PubMed ID: 25453221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counterion and polythymidine loop-length-dependent folding and thermodynamic stability of DNA hairpins reveal the unusual counterion-dependent stability of tetraloop hairpins.
    Nayak RK; Van Orden A
    J Phys Chem B; 2013 Nov; 117(45):13956-66. PubMed ID: 24144397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A correlation between N2-dimethylguanosine presence and alternate tRNA conformers.
    Steinberg S; Cedergren R
    RNA; 1995 Nov; 1(9):886-91. PubMed ID: 8548653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery.
    Li R; Macnamara LM; Leuchter JD; Alexander RW; Cho SS
    Int J Mol Sci; 2015 Jul; 16(7):15872-902. PubMed ID: 26184179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
    Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS
    Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.
    Biyun S; Cho SS; Thirumalai D
    J Am Chem Soc; 2011 Dec; 133(50):20634-43. PubMed ID: 22082261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA hairpin-folding kinetics.
    Zhang W; Chen SJ
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):1931-6. PubMed ID: 11842187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of RNA-assisted protein folding: representation of amino acid kinetics at the tRNA level.
    Biro JC; Biro JM
    J Theor Biol; 2013 Jan; 317():168-74. PubMed ID: 23044190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete suboptimal folding of RNA and the stability of secondary structures.
    Wuchty S; Fontana W; Hofacker IL; Schuster P
    Biopolymers; 1999 Feb; 49(2):145-65. PubMed ID: 10070264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-atom Monte Carlo simulation of GCAA RNA folding.
    Nivón LG; Shakhnovich EI
    J Mol Biol; 2004 Nov; 344(1):29-45. PubMed ID: 15504400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of tRNA folding monitored by aminoacylation.
    Bhaskaran H; Rodriguez-Hernandez A; Perona JJ
    RNA; 2012 Mar; 18(3):569-80. PubMed ID: 22286971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations.
    Bell DR; Cheng SY; Salazar H; Ren P
    Sci Rep; 2017 Apr; 7():45812. PubMed ID: 28393861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the energy landscape of a small RNA hairpin.
    Ma H; Proctor DJ; Kierzek E; Kierzek R; Bevilacqua PC; Gruebele M
    J Am Chem Soc; 2006 Feb; 128(5):1523-30. PubMed ID: 16448122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-nucleotide control of tRNA folding cooperativity under near-cellular conditions.
    Leamy KA; Yamagami R; Yennawar NH; Bevilacqua PC
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23075-23082. PubMed ID: 31666318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases.
    Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S
    Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural rules and conformational compensations in the tRNA L-form.
    Steinberg S; Leclerc F; Cedergren R
    J Mol Biol; 1997 Feb; 266(2):269-82. PubMed ID: 9047362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion of transfer RNA from the A/T state into the A-site using docking and simulations.
    Caulfield T; Devkota B
    Proteins; 2012 Nov; 80(11):2489-500. PubMed ID: 22730134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained model for predicting RNA folding thermodynamics.
    Denesyuk NA; Thirumalai D
    J Phys Chem B; 2013 May; 117(17):4901-11. PubMed ID: 23527587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation.
    Dutta A; Chaudhuri K
    FEMS Microbiol Lett; 2010 Apr; 305(2):100-8. PubMed ID: 20659165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.