These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23841812)

  • 21. Kinetic analysis of yeast galactokinase: implications for transcriptional activation of the GAL genes.
    Timson DJ; Reece RJ
    Biochimie; 2002 Apr; 84(4):265-72. PubMed ID: 12106903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor.
    Lim MK; Siew WL; Zhao J; Tay YC; Ang E; Lehming N
    Biochem J; 2011 May; 435(3):641-9. PubMed ID: 21323640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A negative feedback loop at the nuclear periphery regulates GAL gene expression.
    Green EM; Jiang Y; Joyner R; Weis K
    Mol Biol Cell; 2012 Apr; 23(7):1367-75. PubMed ID: 22323286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gal3 Binds Gal80 Tighter than Gal1 Indicating Adaptive Protein Changes Following Duplication.
    Lavy T; Yanagida H; Tawfik DS
    Mol Biol Evol; 2016 Feb; 33(2):472-7. PubMed ID: 26516093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Springing into Action: Reg2 Negatively Regulates Snf1 Protein Kinase and Facilitates Recovery from Prolonged Glucose Starvation in Saccharomyces cerevisiae.
    Maziarz M; Shevade A; Barrett L; Kuchin S
    Appl Environ Microbiol; 2016 Jul; 82(13):3875-3885. PubMed ID: 27107116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    Avendaño MS; Leidy C; Pedraza JM
    Nat Commun; 2013; 4():2605. PubMed ID: 24189549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of ligand binding on the galactokinase activity of yeast Gal1p and its ability to activate transcription.
    Sellick CA; Jowitt TA; Reece RJ
    J Biol Chem; 2009 Jan; 284(1):229-236. PubMed ID: 18957435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A living vector field reveals constraints on galactose network induction in yeast.
    Stockwell SR; Rifkin SA
    Mol Syst Biol; 2017 Jan; 13(1):908. PubMed ID: 28137775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains.
    Pannala VR; Hazarika SJ; Bhat PJ; Bhartiya S; Venkatesh KV
    IET Syst Biol; 2012 Apr; 6(2):44-53. PubMed ID: 22519357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D; Desai MM; Tucker CM; Jenq HT; Pai DA; Ward A; DeSevo CG; Botstein D; Dunham MJ
    PLoS Genet; 2008 Dec; 4(12):e1000303. PubMed ID: 19079573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    J Biol Chem; 2006 May; 281(19):13485-13492. PubMed ID: 16524886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The galactose-induced decrease in phosphate levels leads to toxicity in yeast models of galactosemia.
    Machado CM; De-Souza EA; De-Queiroz ALFV; Pimentel FSA; Silva GFS; Gomes FM; Montero-Lomelí M; Masuda CA
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1403-1409. PubMed ID: 28213126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate specificity and mechanism from the structure of Pyrococcus furiosus galactokinase.
    Hartley A; Glynn SE; Barynin V; Baker PJ; Sedelnikova SE; Verhees C; de Geus D; van der Oost J; Timson DJ; Reece RJ; Rice DW
    J Mol Biol; 2004 Mar; 337(2):387-98. PubMed ID: 15003454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polygenic evolution of a sugar specialization trade-off in yeast.
    Roop JI; Chang KC; Brem RB
    Nature; 2016 Feb; 530(7590):336-9. PubMed ID: 26863195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Galactose induction in yeast involves association of Gal80p with Gal1p or Gal3p.
    Vollenbroich V; Meyer J; Engels R; Cardinali G; Menezes RA; Hollenberg CP
    Mol Gen Genet; 1999 Apr; 261(3):495-507. PubMed ID: 10323230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential paralog divergence modulates genome evolution across yeast species.
    Sanchez MR; Miller AW; Liachko I; Sunshine AB; Lynch B; Huang M; Alcantara E; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    PLoS Genet; 2017 Feb; 13(2):e1006585. PubMed ID: 28196070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast.
    Rienzo A; Poveda-Huertes D; Aydin S; Buchler NE; Pascual-Ahuir A; Proft M
    Mol Cell Biol; 2015 Nov; 35(21):3669-83. PubMed ID: 26283730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positive Feedback Genetic Circuit Incorporating a Constitutively Active Mutant Gal3 into Yeast GAL Induction System.
    Ryo S; Ishii J; Matsuno T; Nakamura Y; Matsubara D; Tominaga M; Kondo A
    ACS Synth Biol; 2017 Jun; 6(6):928-935. PubMed ID: 28324652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff.
    Wang J; Atolia E; Hua B; Savir Y; Escalante-Chong R; Springer M
    PLoS Biol; 2015 Jan; 13(1):e1002041. PubMed ID: 25626068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.