These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23841875)

  • 1. Deconstructing activation events in rhodopsin.
    Laricheva EN; Arora K; Knight JL; Brooks CL
    J Am Chem Soc; 2013 Jul; 135(30):10906-9. PubMed ID: 23841875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment.
    Periole X; Ceruso MA; Mehler EL
    Biochemistry; 2004 Jun; 43(22):6858-64. PubMed ID: 15170322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate.
    Zaitseva E; Brown MF; Vogel R
    J Am Chem Soc; 2010 Apr; 132(13):4815-21. PubMed ID: 20230054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two protonation switches control rhodopsin activation in membranes.
    Mahalingam M; Martínez-Mayorga K; Brown MF; Vogel R
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17795-800. PubMed ID: 18997017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of glutamic acid in the conserved E/DRY triad to the functional properties of rhodopsin.
    Sato K; Yamashita T; Shichida Y
    Biochemistry; 2014 Jul; 53(27):4420-5. PubMed ID: 24960425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I.
    Eilers M; Goncalves JA; Ahuja S; Kirkup C; Hirshfeld A; Simmerling C; Reeves PJ; Sheves M; Smith SO
    J Phys Chem B; 2012 Sep; 116(35):10477-89. PubMed ID: 22564141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Conserved Proline Hinge Mediates Helix Dynamics and Activation of Rhodopsin.
    Pope AL; Sanchez-Reyes OB; South K; Zaitseva E; Ziliox M; Vogel R; Reeves PJ; Smith SO
    Structure; 2020 Sep; 28(9):1004-1013.e4. PubMed ID: 32470317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.
    Ye S; Zaitseva E; Caltabiano G; Schertler GF; Sakmar TP; Deupi X; Vogel R
    Nature; 2010 Apr; 464(7293):1386-9. PubMed ID: 20383122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints.
    Hornak V; Ahuja S; Eilers M; Goncalves JA; Sheves M; Reeves PJ; Smith SO
    J Mol Biol; 2010 Feb; 396(3):510-27. PubMed ID: 20004206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.
    Sugihara M; Fujibuchi W; Suwa M
    J Phys Chem B; 2011 May; 115(19):6172-9. PubMed ID: 21510671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
    Standfuss J; Zaitseva E; Mahalingam M; Vogel R
    J Mol Biol; 2008 Jun; 380(1):145-57. PubMed ID: 18511075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
    Brown MF; Salgado GF; Struts AV
    Biochim Biophys Acta; 2010 Feb; 1798(2):177-93. PubMed ID: 19716801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and pH sensitivity of the transmembrane segment 3 of rhodopsin.
    Madathil S; Furlinski G; Fahmy K
    Biopolymers; 2006 Jul; 82(4):329-33. PubMed ID: 16453309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state.
    Kim JM; Altenbach C; Thurmond RL; Khorana HG; Hubbell WL
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14273-8. PubMed ID: 9405602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal conformation governs pKa of protonated Schiff base in rhodopsin activation.
    Zhu S; Brown MF; Feller SE
    J Am Chem Soc; 2013 Jun; 135(25):9391-8. PubMed ID: 23701524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures.
    Lans I; Dalton JAR; Giraldo J
    J Struct Biol; 2015 Dec; 192(3):545-553. PubMed ID: 26522273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations.
    Sgourakis NG; Garcia AE
    J Mol Biol; 2010 Apr; 398(1):161-73. PubMed ID: 20184892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.