BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23841919)

  • 1. Antimicrobial activity of aurein 2.5 against yeasts.
    Dennison SR; Harris F; Morton LH; Phoenix DA
    FEMS Microbiol Lett; 2013 Sep; 346(2):140-5. PubMed ID: 23841919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of aurein 2.5 with fungal membranes.
    Dennison SR; Morton LH; Harris F; Phoenix DA
    Eur Biophys J; 2014 Jul; 43(6-7):255-64. PubMed ID: 24728560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungicidal effect of three new synthetic cationic peptides against Candida albicans.
    Nikawa H; Fukushima H; Makihira S; Hamada T; Samaranayake LP
    Oral Dis; 2004 Jul; 10(4):221-8. PubMed ID: 15196144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action.
    Avrahami D; Shai Y
    Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Panurgines, novel antimicrobial peptides from the venom of communal bee Panurgus calcaratus (Hymenoptera: Andrenidae).
    Čujová S; Slaninová J; Monincová L; Fučík V; Bednárová L; Štokrová J; Hovorka O; Voburka Z; Straka J; Čeřovský V
    Amino Acids; 2013 Jul; 45(1):143-57. PubMed ID: 23483218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphipathic alpha-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions.
    Park SC; Kim MH; Hossain MA; Shin SY; Kim Y; Stella L; Wade JD; Park Y; Hahm KS
    Biochim Biophys Acta; 2008 Jan; 1778(1):229-41. PubMed ID: 17961502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the interactions of Aurein 2.5 with bacterial membranes.
    Dennison SR; Morton LH; Shorrocks AJ; Harris F; Phoenix DA
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):225-30. PubMed ID: 19056250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of amidation on the antimicrobial peptide aurein 2.5 from Australian southern bell frogs.
    Dennison SR; Morton LH; Phoenix DA
    Protein Pept Lett; 2012 Jun; 19(6):586-91. PubMed ID: 22519529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal peptides at membrane interaction.
    Di Marino S; Scrima M; Grimaldi M; D'Errico G; Vitiello G; Sanguinetti M; De Rosa M; Soriente A; Novellino E; D'Ursi AM
    Eur J Med Chem; 2012 May; 51():154-62. PubMed ID: 22417640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candidacidal mechanism of a Leu/Lys-rich α-helical amphipathic model antimicrobial peptide and its diastereomer composed of D,L-amino acids.
    Wang P; Nan YH; Shin SY
    J Pept Sci; 2010 Nov; 16(11):601-6. PubMed ID: 20665599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of β-Amino Acids Enhances the Antifungal Activity and Selectivity of the Helical Antimicrobial Peptide Aurein 1.2.
    Lee MR; Raman N; Gellman SH; Lynn DM; Palecek SP
    ACS Chem Biol; 2017 Dec; 12(12):2975-2980. PubMed ID: 29091404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of new antifungal peptides selective against Cryptococcus neoformans.
    Grimaldi M; De Rosa M; Di Marino S; Scrima M; Posteraro B; Sanguinetti M; Fadda G; Soriente A; D'Ursi AM
    Bioorg Med Chem; 2010 Nov; 18(22):7985-90. PubMed ID: 20943406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating charge-dependent and folding-mediated antimicrobial interactions at peptide-lipid interfaces.
    Iavicoli P; Rossi F; Lamarre B; Bella A; Ryadnov MG; Calzolai L
    Eur Biophys J; 2017 May; 46(4):375-382. PubMed ID: 27832293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungicidal mechanisms of the antimicrobial peptide Bac8c.
    Lee W; Lee DG
    Biochim Biophys Acta; 2015 Feb; 1848(2):673-9. PubMed ID: 25434926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pleurocidin-derived antifungal peptides with selective membrane-disruption effect.
    Sung WS; Lee DG
    Biochem Biophys Res Commun; 2008 May; 369(3):858-61. PubMed ID: 18325325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3.
    Choi H; Hwang JS; Kim H; Lee DG
    Biochem Biophys Res Commun; 2013 Oct; 440(1):94-8. PubMed ID: 24041699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the papiliocin peptide derived from Papilio xuthus on the perturbation of fungal cell membranes.
    Lee J; Hwang JS; Hwang B; Kim JK; Kim SR; Kim Y; Lee DG
    FEMS Microbiol Lett; 2010 Oct; 311(1):70-5. PubMed ID: 20707816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial properties of a lipid interactive alpha-helical peptide VP1 against Staphylococcus aureus bacteria.
    Dennison SR; Morton LH; Harris F; Phoenix DA
    Biophys Chem; 2007 Sep; 129(2-3):279-83. PubMed ID: 17640795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global phenotype screening and transcript analysis outlines the inhibitory mode(s) of action of two amphibian-derived, alpha-helical, cationic peptides on Saccharomyces cerevisiae.
    Morton CO; Hayes A; Wilson M; Rash BM; Oliver SG; Coote P
    Antimicrob Agents Chemother; 2007 Nov; 51(11):3948-59. PubMed ID: 17846143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.