These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23842027)

  • 1. Analysis of diffuse K+ and Mg2+ ion binding to a two-base-pair kissing complex by single-molecule mechanical unfolding.
    Li PT
    Biochemistry; 2013 Jul; 52(29):4991-5001. PubMed ID: 23842027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical unfolding of two DIS RNA kissing complexes from HIV-1.
    Li PT; Tinoco I
    J Mol Biol; 2009 Mar; 386(5):1343-56. PubMed ID: 19452632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability.
    Nixon PL; Giedroc DP
    Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual mechanical stability of a minimal RNA kissing complex.
    Li PT; Bustamante C; Tinoco I
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15847-52. PubMed ID: 17043221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of folding a pseudoknotted mRNA fragment.
    Gluick TC; Draper DE
    J Mol Biol; 1994 Aug; 241(2):246-62. PubMed ID: 7520082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinities and selectivities of divalent cation binding sites within an RNA tertiary structure.
    Bukhman YV; Draper DE
    J Mol Biol; 1997 Nov; 273(5):1020-31. PubMed ID: 9367788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Mg2+, K+, and H+ on an equilibrium between alternative conformations of an RNA pseudoknot.
    Gluick TC; Gerstner RB; Draper DE
    J Mol Biol; 1997 Jul; 270(3):451-63. PubMed ID: 9237910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of RNA tertiary structure by monovalent cations.
    Shiman R; Draper DE
    J Mol Biol; 2000 Sep; 302(1):79-91. PubMed ID: 10964562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of helix stability on the formation of loop-loop complexes.
    Sehdev P; Crews G; Soto AM
    Biochemistry; 2012 Dec; 51(48):9612-23. PubMed ID: 23094588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations.
    Spacková N; Réblová K; Sponer J
    J Phys Chem B; 2010 Aug; 114(32):10581-93. PubMed ID: 20701388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bases defining an ammonium and magnesium ion-dependent tertiary structure within the large subunit ribosomal RNA.
    Lu M; Draper DE
    J Mol Biol; 1994 Dec; 244(5):572-85. PubMed ID: 7527467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Displacement of Mn2+ from RNA by K+, Mg2+, neomycin B, and an arginine-rich peptide: indirect detection of nucleic acid/ligand interactions using phosphorus relaxation enhancement.
    Summers JS; Shimko J; Freedman FL; Badger CT; Sturgess M
    J Am Chem Soc; 2002 Dec; 124(50):14934-9. PubMed ID: 12475335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The essential role of stacking adenines in a two-base-pair RNA kissing complex.
    Stephenson W; Asare-Okai PN; Chen AA; Keller S; Santiago R; Tenenbaum SA; Garcia AE; Fabris D; Li PT
    J Am Chem Soc; 2013 Apr; 135(15):5602-11. PubMed ID: 23517345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies.
    Collin D; Ritort F; Jarzynski C; Smith SB; Tinoco I; Bustamante C
    Nature; 2005 Sep; 437(7056):231-4. PubMed ID: 16148928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot.
    Nixon PL; Giedroc DP
    J Mol Biol; 2000 Feb; 296(2):659-71. PubMed ID: 10669615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling and dynamics studies of HIV-1 kissing loop structures.
    Pattabiraman N; Martinez HM; Shapiro BA
    J Biomol Struct Dyn; 2002 Dec; 20(3):397-412. PubMed ID: 12437378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism.
    Nakano S; Cerrone AL; Bevilacqua PC
    Biochemistry; 2003 Mar; 42(10):2982-94. PubMed ID: 12627964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.