These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23842114)

  • 1. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation.
    Möller D; Degen N; Dual J
    J Nanobiotechnology; 2013 Jun; 11():21. PubMed ID: 23842114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation.
    Dual J; Hahn P; Leibacher I; Möller D; Schwarz T; Wang J
    Lab Chip; 2012 Oct; 12(20):4010-21. PubMed ID: 22971740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound.
    Oberti S; Neild A; Dual J
    J Acoust Soc Am; 2007 Feb; 121(2):778-85. PubMed ID: 17348502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic devices for particle and cell manipulation and sensing.
    Qiu Y; Wang H; Demore CE; Hughes DA; Glynne-Jones P; Gebhardt S; Bolhovitins A; Poltarjonoks R; Weijer K; Schönecker A; Hill M; Cochran S
    Sensors (Basel); 2014 Aug; 14(8):14806-38. PubMed ID: 25123465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.
    Hughes DA; Qiu Y; Démoré C; Weijer CJ; Cochran S
    Ultrasonics; 2015 Feb; 56():172-7. PubMed ID: 25448425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
    Ochiai Y; Hoshi T; Rekimoto J
    PLoS One; 2014; 9(5):e97590. PubMed ID: 24849371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound assisted particle and cell manipulation on-chip.
    Mulvana H; Cochran S; Hill M
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1600-10. PubMed ID: 23906935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle size effects on stable levitation positions in acoustic standing waves.
    Rueckner W; Peidle J; Crockett A; Davis D
    J Acoust Soc Am; 2023 Aug; 154(2):1339-1346. PubMed ID: 37650782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical evaluation of the acoustic field in an ultrasonic bioreactor.
    Louw TM; Subramanian A; Viljoen HJ
    Ultrasound Med Biol; 2015 Jun; 41(6):1766-78. PubMed ID: 25771444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling for the robust design of layered resonators for ultrasonic particle manipulation.
    Hill M; Townsend RJ; Harris NR
    Ultrasonics; 2008 Nov; 48(6-7):521-8. PubMed ID: 18664398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle separation in microfluidics using a switching ultrasonic field.
    Liu Y; Lim KM
    Lab Chip; 2011 Sep; 11(18):3167-73. PubMed ID: 21826293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic pressure field estimation methods for synthetic schlieren tomography.
    Koponen E; Leskinen J; Tarvainen T; Pulkkinen A
    J Acoust Soc Am; 2019 Apr; 145(4):2470. PubMed ID: 31046360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes.
    Schwarz T; Petit-Pierre G; Dual J
    J Acoust Soc Am; 2013 Mar; 133(3):1260-8. PubMed ID: 23463999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microparticle manipulation in millimetre scale ultrasonic standing wave chambers.
    Hawkes JJ; Barrow D; Coakley WT
    Ultrasonics; 1998 Aug; 36(9):925-31. PubMed ID: 9735860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-micron particle manipulation in an ultrasonic standing wave: applications in detection of clinically important biomolecules.
    Sobanski MA; Tucker CR; Thomas NE; Coakley WT
    Bioseparation; 2000; 9(6):351-7. PubMed ID: 11518238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.