These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23842186)

  • 1. Laser-induced optogalvanic signal oscillations in miniature neon glow discharge plasma.
    Saini VK
    Appl Opt; 2013 Jun; 52(18):4404-11. PubMed ID: 23842186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on pulsed optogalvanic effect in Eu/Ne hollow cathode discharge.
    Saini VK; Kumar P; Dixit SK; Nakhe SV
    Appl Opt; 2014 Jul; 53(19):4320-6. PubMed ID: 25089996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on laser-assisted Penning ionization by the optogalvanic effect in Ne/Eu hollow cathode discharge.
    Saini VK; Kumar P; Dixit SK; Nakhe SV
    Appl Opt; 2015 Feb; 54(4):595-602. PubMed ID: 25967764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogalvanic spectra of neon and argon in glow discharge lamps.
    Nestor JR
    Appl Opt; 1982 Nov; 21(22):4154-6. PubMed ID: 20401023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies.
    Saini VK; Kumar P; Sarangpani KK; Dixit SK; Nakhe SV
    Rev Sci Instrum; 2017 Sep; 88(9):093101. PubMed ID: 28964210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial relaxation of selective laser perturbations in a glow discharge plasma.
    Brandt C; Kozakov R; Testrich H; Golubovskii YB; Wilke C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013103. PubMed ID: 23410442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.
    Kumar P; Kumar J; Prakash O; Saini VK; Dixit SK; Nakhe SV
    Appl Spectrosc; 2013 Sep; 67(9):1036-41. PubMed ID: 24067634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional model of a direct current glow discharge:  description of the argon metastable atoms, sputtered atoms, and ions.
    Bogaerts A; Gijbels R
    Anal Chem; 1996 Aug; 68(15):2676-85. PubMed ID: 21619213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One and two-photon excited optogalvanic spectra of argon in the wavelength region of 735-850 nm.
    Matsuta H; Wagatsuma K; Kitagawa K
    Anal Sci; 2010 Jan; 26(1):25-31. PubMed ID: 20065583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method to measure the electric field vector in an argon glow discharge using laser polarization spectroscopy.
    Gavrilenko VP; Kim HJ; Ikutake T; Kim JB; Bowden MD; Muraoka K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047401. PubMed ID: 11308986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emission- and fluorescence-spectroscopic investigation of a glow discharge plasma: absolute number density of radiative and nonradiative atoms in the negative glow.
    Takubo Y; Sato T; Asaoka N; Kusaka K; Akiyama T; Muroo K; Yamamoto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016405. PubMed ID: 18351942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Off-resonance dispersion profile effect in gas laser resonators.
    Taché JP
    Appl Opt; 1980 Dec; 19(24):4214-21. PubMed ID: 20309039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of singly-ionized argon species in helium-matrix Grimm glow discharge plasmas II - Comparison between argon and neon.
    Wagatsuma K; Hirokawa K
    Anal Bioanal Chem; 1996 Jul; 355(7-8):876-7. PubMed ID: 15045285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens.
    Canulescu S; Molchan IS; Tauziede C; Tempez A; Whitby JA; Thompson GE; Skeldon P; Chapon P; Michler J
    Anal Bioanal Chem; 2010 Apr; 396(8):2871-9. PubMed ID: 20033679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion formation processes in the afterpeak time regime of pulsed glow discharge plasmas.
    Pan C; King FL
    J Am Soc Mass Spectrom; 1993 Sep; 4(9):727-32. PubMed ID: 24225999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rydberg gas theory of a glow discharge plasma: III. Formation, occupied state distributions, free energy, and kinetic control.
    Mason RS; Douglas P
    Phys Chem Chem Phys; 2010 Apr; 12(15):3729-40. PubMed ID: 20358067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penning ionization electron spectroscopy of hydrogen sulfide by metastable helium and neon atoms.
    Falcinelli S; Candori P; Bettoni M; Pirani F; Vecchiocattivi F
    J Phys Chem A; 2014 Aug; 118(33):6501-6. PubMed ID: 24796487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the discharge characteristics of the pulsed discharge nozzle.
    Broks BH; Brok WJ; Remy J; van der Mullen JJ; Benidar A; Biennier L; Salama F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036409. PubMed ID: 15903590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-of-Flight Mass Spectrometry with a Pulsed Glow Discharge Ionization Source.
    Steiner RE; Lewis CL; King FL
    Anal Chem; 1997 May; 69(9):1715-21. PubMed ID: 21639294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen microplasma generated in chip-based ingroove glow discharge device for detection of organic fragments by optical emission spectrometry.
    Meng F; Duan Y
    Anal Chem; 2015 Feb; 87(3):1882-8. PubMed ID: 25549660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.