These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23842306)

  • 1. Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition.
    Park JB; Lee IM; Lee SY; Kim K; Choi D; Song EY; Lee B
    Opt Express; 2013 Jul; 21(13):15205-12. PubMed ID: 23842306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable near-infrared Gires-Tournois resonators based on vanadium dioxide on gold film.
    Jafari AK; Gaddy M; Ho YC; Uzun C; Kuryatkov V; Nikishin SA; Kim MH; Grave de Peralta L; Bernussi AA
    Opt Lett; 2022 Feb; 47(3):645-648. PubMed ID: 35103694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.
    Savaliya PB; Thomas A; Dua R; Dhawan A
    Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nanodiscs on vanadium dioxide thin films for tunable luminescence enhancement.
    Cunningham S; Hrelescu C; Bradley AL
    Opt Express; 2021 Jul; 29(14):22288-22298. PubMed ID: 34265997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles.
    Pavaskar P; Theiss J; Cronin SB
    Opt Express; 2012 Jun; 20(13):14656-62. PubMed ID: 22714527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional SiO
    Ke Y; Balin I; Wang N; Lu Q; Tok AI; White TJ; Magdassi S; Abdulhalim I; Long Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33112-33120. PubMed ID: 27934184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond Laser-Induced Vanadium Oxide Metamaterial Nanostructures and the Study of Optical Response by Experiments and Numerical Simulations.
    Bhupathi S; Wang S; Abutoama M; Balin I; Wang L; Kazansky PG; Long Y; Abdulhalim I
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41905-41918. PubMed ID: 32838521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared dipole antenna enhanced by surface phonon polaritons.
    Kim HC; Cheng X
    Opt Lett; 2010 Nov; 35(22):3748-50. PubMed ID: 21081984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering.
    Wen X; Zhang Q; Chai J; Wong LM; Wang S; Xiong Q
    Opt Express; 2014 Feb; 22(3):2989-95. PubMed ID: 24663590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actively Tunable Metasurfaces via Plasmonic Nanogap Cavities with Sub-10-nm VO
    Boyce AM; Stewart JW; Avila J; Shen Q; Zhang S; Wheeler VD; Mikkelsen MH
    Nano Lett; 2022 May; 22(9):3525-3531. PubMed ID: 35472261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO
    Petronijevic E; Centini M; Cesca T; Mattei G; Bovino FA; Sibilia C
    Opt Express; 2019 Aug; 27(17):24260-24273. PubMed ID: 31510318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Strong and tunable field enhancement obtained by periodic rectangular pit structure].
    Wang M; Wang B; Fu SY; Huang SP; Guo TK; Li HY; Xu XX; Wang YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):293-7. PubMed ID: 25974981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces.
    Kim Y; Wu PC; Sokhoyan R; Mauser K; Glaudell R; Kafaie Shirmanesh G; Atwater HA
    Nano Lett; 2019 Jun; 19(6):3961-3968. PubMed ID: 31136191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative spatial mapping of distorted state phases during the metal-insulator phase transition for nanoscale VO
    Ashida Y; Ishibe T; Yang J; Naruse N; Nakamura Y
    Sci Technol Adv Mater; 2023; 24(1):1-9. PubMed ID: 36583095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold and Hot Spots: From Inhibition to Enhancement by Nanoscale Phase Tuning of Optical Nanoantennas.
    Palombo Blascetta N; Lombardi P; Toninelli C; van Hulst NF
    Nano Lett; 2020 Sep; 20(9):6756-6762. PubMed ID: 32804516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal.
    Bernal MP; Roussey M; Baida FI
    J Microsc; 2008 Feb; 229(Pt 2):264-9. PubMed ID: 18304083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable multispectral near-infrared absorption with a phase transition of VO
    Rashidi A; Entezar SR; Hatef A
    Nanotechnology; 2020 Aug; 31(33):335701. PubMed ID: 32348972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization.
    Geldhauser T; Kolloch A; Murazawa N; Ueno K; Boneberg J; Leiderer P; Scheer E; Misawa H
    Langmuir; 2012 Jun; 28(24):9041-6. PubMed ID: 22429023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.
    Chen MW; You S; Suslick KS; Dlott DD
    Rev Sci Instrum; 2014 Feb; 85(2):023705. PubMed ID: 24593369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.