These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23842320)

  • 21. Loss compensation by spasers in plasmonic systems.
    Andrianov ES; Baranov DG; Pukhov AA; Dorofeenko AV; Vinogradov AP; Lisyansky AA
    Opt Express; 2013 Jun; 21(11):13467-78. PubMed ID: 23736600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.
    Brus L
    Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers.
    Kress SJP; Cui J; Rohner P; Kim DK; Antolinez FV; Zaininger KA; Jayanti SV; Richner P; McPeak KM; Poulikakos D; Norris DJ
    Sci Adv; 2017 Sep; 3(9):e1700688. PubMed ID: 28948219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relaxation dynamics of a quantum emitter resonantly coupled to a metal nanoparticle.
    Nerkararyan KV; Bozhevolnyi SI
    Opt Lett; 2014 Mar; 39(6):1617-20. PubMed ID: 24690852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-exponential decay of dark localized surface plasmons.
    Ginzburg P; Zayats AV
    Opt Express; 2012 Mar; 20(6):6720-7. PubMed ID: 22418556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A low lasing threshold and widely tunable spaser based on two dark surface plasmons.
    Huo Y; Jia T; Ning T; Tan C; Jiang S; Yang C; Jiao Y; Man B
    Sci Rep; 2017 Oct; 7(1):13590. PubMed ID: 29051503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence of excited-state plasmon modes in linear hydrogen chains from time-dependent quantum mechanical methods.
    DePrince AE; Pelton M; Guest JR; Gray SK
    Phys Rev Lett; 2011 Nov; 107(19):196806. PubMed ID: 22181635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution.
    Myroshnychenko V; Nishio N; García de Abajo FJ; Förstner J; Yamamoto N
    ACS Nano; 2018 Aug; 12(8):8436-8446. PubMed ID: 30067900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafast pulse pumping of topological nanospaser.
    Hunley DC; Oliaei Motlagh SA; Ghimire R; Apalkov V
    J Phys Condens Matter; 2023 May; 35(31):. PubMed ID: 37071999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical source of surface plasmon polaritons based on hybrid Au-GaAs QW structures.
    Li J; Wei H; Shen H; Wang Z; Zhao Z; Duan X; Xu H
    Nanoscale; 2013 Sep; 5(18):8494-9. PubMed ID: 23900526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding.
    Miyata M; Takahara J
    Opt Express; 2013 Apr; 21(7):7882-90. PubMed ID: 23571879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
    Ozel T; Nizamoglu S; Sefunc MA; Samarskaya O; Ozel IO; Mutlugun E; Lesnyak V; Gaponik N; Eychmuller A; Gaponenko SV; Demir HV
    ACS Nano; 2011 Feb; 5(2):1328-34. PubMed ID: 21247187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitation of surface plasmons by finite width beams.
    Kou EF; Tamir T
    Appl Opt; 1989 Mar; 28(6):1169-77. PubMed ID: 20548637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers.
    Ma S; Sun H; Chen Z; Dutta NK
    Opt Express; 2009 Oct; 17(21):18469-77. PubMed ID: 20372577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photo-plasmonic effect as the hot electron generation mechanism.
    Akbari-Moghanjoughi M
    Sci Rep; 2023 Jan; 13(1):589. PubMed ID: 36631539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Cao JX; Zhu SN; Zhang X
    Opt Express; 2010 Oct; 18(21):22412-7. PubMed ID: 20941141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels.
    Arnold N; Ding B; Hrelescu C; Klar TA
    Beilstein J Nanotechnol; 2013 Dec; 4():974-87. PubMed ID: 24455456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anisotropic plasmon-coupling dimerization of a pair of spherical electron gases.
    Gumbs G; Iurov A; Balassis A; Huang D
    J Phys Condens Matter; 2014 Apr; 26(13):135601. PubMed ID: 24625751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.