These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23842334)

  • 41. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.
    Chen J; Wang P; Chen C; Lu Y; Ming H; Zhan Q
    Opt Express; 2011 Mar; 19(7):5970-8. PubMed ID: 21451622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coupled spiral-shaped microdisk resonators with non-evanescent asymmetric inter-cavity coupling.
    Luo X; Poon AW
    Opt Express; 2007 Dec; 15(25):17313-22. PubMed ID: 19551025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection of dark modes in resonators with conical reflectors.
    Parkhomenko YN; Spektor B; Shamir J
    Appl Opt; 2011 Jul; 50(19):3093-100. PubMed ID: 21743507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Zhu SN; Zhang X
    Opt Express; 2010 Aug; 18(17):18229-34. PubMed ID: 20721213
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupling effects in low-symmetry planar split-ring resonator arrays.
    Decker M; Linden S; Wegener M
    Opt Lett; 2009 May; 34(10):1579-81. PubMed ID: 19448827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of Asymmetry in Active Split-Ring Resonators to Design Circulating-Current Eigenmode: Demonstration of Beamsteering and Focal-Length Control toward Reconfigurable Intelligent Surface.
    Kitayama D; Pander A; Takahashi H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical forces in twisted split-ring-resonator dimer stereometamaterials.
    Tang C; Wang Q; Liu F; Chen Z; Wang Z
    Opt Express; 2013 May; 21(10):11783-93. PubMed ID: 23736400
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Second-harmonic optical spectroscopy on split-ring-resonator arrays.
    Niesler FB; Feth N; Linden S; Wegener M
    Opt Lett; 2011 May; 36(9):1533-5. PubMed ID: 21540918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial.
    Mutlu M; Akosman AE; Serebryannikov AE; Ozbay E
    Opt Express; 2011 Jul; 19(15):14290-9. PubMed ID: 21934793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linear birefringence in split-ring resonators.
    Iyer S; Popov S; Friberg AT
    Opt Lett; 2012 Jun; 37(11):2043-5. PubMed ID: 22660115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts.
    Zhu H; Yu SF; Wang QJ; Shan CX; Su SC
    Opt Lett; 2013 May; 38(9):1527-9. PubMed ID: 23632540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Near-field investigation of induced transparency in similarly oriented double split-ring resonators.
    Merbold H; Bitzer A; Feurer T
    Opt Lett; 2011 May; 36(9):1683-5. PubMed ID: 21540968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Geometrical Mie theory for resonances in nanoparticles of any shape.
    Papoff F; Hourahine B
    Opt Express; 2011 Oct; 19(22):21432-44. PubMed ID: 22108993
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube.
    Woo JH; Choi E; Kang B; Kim ES; Kim J; Lee YU; Hong TY; Kim JH; Lee I; Lee YH; Wu JW
    Opt Express; 2012 Jul; 20(14):15440-51. PubMed ID: 22772240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators.
    Mutlu M; Akosman AE; Serebryannikov AE; Ozbay E
    Opt Lett; 2011 May; 36(9):1653-5. PubMed ID: 21540958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain.
    Meinzer N; Ruther M; Linden S; Soukoulis CM; Khitrova G; Hendrickson J; Olitzky JD; Gibbs HM; Wegener M
    Opt Express; 2010 Nov; 18(23):24140-51. PubMed ID: 21164760
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical isolation via 𝒫 𝒯 -symmetric nonlinear Fano resonances.
    Nazari F; Bender N; Ramezani H; Moravvej-Farshi MK; Christodoulides DN; Kottos T
    Opt Express; 2014 Apr; 22(8):9574-84. PubMed ID: 24787845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures.
    Fu YH; Zhang JB; Yu YF; Luk'yanchuk B
    ACS Nano; 2012 Jun; 6(6):5130-7. PubMed ID: 22577794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities.
    Sonnefraud Y; Verellen N; Sobhani H; Vandenbosch GA; Moshchalkov VV; Van Dorpe P; Nordlander P; Maier SA
    ACS Nano; 2010 Mar; 4(3):1664-70. PubMed ID: 20155967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps.
    Bagiante S; Enderli F; Fabiańska J; Sigg H; Feurer T
    Sci Rep; 2015 Jan; 5():8051. PubMed ID: 25623373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.