These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23842373)

  • 1. Enhanced light output power of quantum cascade lasers from a tilted front facet.
    Ahn S; Schwarzer C; Zederbauer T; Detz H; Andrews AM; Schrenk W; Strasser G
    Opt Express; 2013 Jul; 21(13):15869-77. PubMed ID: 23842373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum cascade lasers with a tilted facet utilizing the inherent polarization purity.
    Ahn S; Ristanic D; Gansch R; Reininger P; Schwarzer C; MacFarland DC; Detz H; Schrenk W; Strasser G
    Opt Express; 2014 Oct; 22(21):26294-301. PubMed ID: 25401662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings.
    Wang DB; Zhang JC; Cheng FM; Zhao Y; Zhuo N; Zhai SQ; Wang LJ; Liu JQ; Liu SM; Liu FQ; Wang ZG
    Nanoscale Res Lett; 2018 Feb; 13(1):37. PubMed ID: 29396762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-power room-temperature continuous-wave mid-infrared interband cascade lasers.
    Bewley WW; Canedy CL; Kim CS; Kim M; Merritt CD; Abell J; Vurgaftman I; Meyer JR
    Opt Express; 2012 Sep; 20(19):20894-901. PubMed ID: 23037213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum cascade laser gain enhancement by front facet illumination.
    Chen G; Bethea CG; Martini R
    Opt Express; 2009 Dec; 17(26):24282-7. PubMed ID: 20052139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High power CW (16W) and pulse (145W) laser diodes based on quantum well heterostructures.
    Tarasov IS; Pikhtin NA; Slipchenko SO; Sokolova ZN; Vinokurov DA; Borschev KS; Kapitonov VA; Khomylev MA; Leshko AY; Lyutetskiy AV; Stankevich AL
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):819-23. PubMed ID: 17270490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification and front facet reflectivity of broad area lasers.
    Keshet A; Eugster P; Bloudoff P; Klappauf BG; Madison KW
    Opt Express; 2007 Sep; 15(19):12344-55. PubMed ID: 19547603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser diode facet modal reflectivity measurements.
    Repasky KS; Switzer GW; Smith CW; Carlsten JL
    Appl Opt; 2000 Aug; 39(24):4338-44. PubMed ID: 18350019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth.
    Jia ZW; Wang LJ; Zhang JC; Liu FQ; Zhou YH; Wang DB; Jia XF; Zhuo N; Liu JQ; Zhai SQ; Wang ZG
    Nanoscale Res Lett; 2017 Dec; 12(1):281. PubMed ID: 28423867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.
    Lambrecht A; Pfeifer M; Konz W; Herbst J; Axtmann F
    Analyst; 2014 May; 139(9):2070-8. PubMed ID: 24367797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THz quantum cascade lasers with wafer bonded active regions.
    Brandstetter M; Deutsch C; Benz A; Cole GD; Detz H; Andrews AM; Schrenk W; Strasser G; Unterrainer K
    Opt Express; 2012 Oct; 20(21):23832-7. PubMed ID: 23188348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Infrared spectroscopy based on quantum cascade lasers].
    Wen ZQ; Chen G; Peng C; Yuan WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):949-53. PubMed ID: 23841405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the lateral-mode discrimination of broad-area diode lasers with a profiled reflectivity output facet.
    Stryckman D; Rousseau G; D'Auteuil M; McCarthy N
    Appl Opt; 1996 Oct; 35(30):5955-9. PubMed ID: 21127607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental research on the performance of a very-small-aperture laser.
    Hongfeng G; Wang J; Tian Q; Xia W; Xiangang X; Han S; Hao Z
    J Microsc; 2008 Mar; 229(Pt 3):496-502. PubMed ID: 18331501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of cavity length-dependent temperature sensitivity of GaInNAs quantum dot lasers and quantum well lasers.
    Liu CY; Yoon SF; Cao Q; Tong CZ; Sun ZZ
    Nanotechnology; 2006 Nov; 17(22):5627-31. PubMed ID: 21727334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of output power in hollow-waveguide lasers.
    Szczepański P; Witoński P
    Appl Opt; 1995 Sep; 34(27):6099-107. PubMed ID: 21060449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared.
    Taubman MS; Myers TL; Cannon BD; Williams RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec; 60(14):3457-68. PubMed ID: 15561632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference fringes in the far field of short-external-cavity InGaAsP diode lasers: a method for longitudinal mode control.
    Ventrudo BF; Cassidy DT
    Appl Opt; 1993 Nov; 32(33):6620-7. PubMed ID: 20856508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically pumped hybrid evanescent Si/InGaAsP lasers.
    Sun X; Zadok A; Shearn MJ; Diest KA; Ghaffari A; Atwater HA; Scherer A; Yariv A
    Opt Lett; 2009 May; 34(9):1345-7. PubMed ID: 19412267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonuniform output characteristics of laser diode with wet-etched spot-size converter.
    Choe JS; Kwon YH; Kim SB; Ju JJ
    Opt Express; 2008 Apr; 16(8):5790-6. PubMed ID: 18542689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.