These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23842374)

  • 1. Shock formation in supersonic cluster jets and its effect on axially modulated laser-produced plasma waveguides.
    Yoon SJ; Goers AJ; Hine GA; Magill JD; Elle JA; Chen YH; Milchberg HM
    Opt Express; 2013 Jul; 21(13):15878-87. PubMed ID: 23842374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supersonic gas jets for laser-plasma experiments.
    Schmid K; Veisz L
    Rev Sci Instrum; 2012 May; 83(5):053304. PubMed ID: 22667614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of axially modulated plasma waveguides using a spatial light modulator.
    Hine GA; Goers AJ; Feder L; Elle JA; Yoon SJ; Milchberg HM
    Opt Lett; 2016 Aug; 41(15):3427-30. PubMed ID: 27472585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.
    Ciardi A; Vinci T; Fuchs J; Albertazzi B; Riconda C; Pépin H; Portugall O
    Phys Rev Lett; 2013 Jan; 110(2):025002. PubMed ID: 23383908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma waveguides efficiently generated by Bessel beams in elongated cluster gas jets.
    Sheng H; Kim KY; Kumarappan V; Layer BD; Milchberg HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036411. PubMed ID: 16241583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials.
    Collins GW; Valenzuela JC; Speliotopoulos CA; Aybar N; Conti F; Beg FN; Tzeferacos P; Khiar B; Bott AFA; Gregori G
    Phys Rev E; 2020 Feb; 101(2-1):023205. PubMed ID: 32168644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Measurements of Ion Heating in Collisional Plasma Shocks and Interpenetrating Supersonic Plasma Flows.
    Langendorf SJ; Yates KC; Hsu SC; Thoma C; Gilmore M
    Phys Rev Lett; 2018 Nov; 121(18):185001. PubMed ID: 30444415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kelvin-Helmholtz turbulence associated with collisionless shocks in laser produced plasmas.
    Kuramitsu Y; Sakawa Y; Dono S; Gregory CD; Pikuz SA; Loupias B; Koenig M; Waugh JN; Woolsey N; Morita T; Moritaka T; Sano T; Matsumoto Y; Mizuta A; Ohnishi N; Takabe H
    Phys Rev Lett; 2012 May; 108(19):195004. PubMed ID: 23003052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium processes in supersonic jets of N2, H2, and N2 + H2 mixtures: (II) shock waves.
    Ramos A; Tejeda G; Fernández JM; Montero S
    J Phys Chem A; 2010 Jul; 114(29):7761-8. PubMed ID: 20593875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Measurements of Ion Diffusion Coefficients and Heating in a Multi-Ion-Species Plasma Shock.
    Chu F; LaJoie AL; Keenan BD; Webster L; Langendorf SJ; Gilmore MA
    Phys Rev Lett; 2023 Apr; 130(14):145101. PubMed ID: 37084442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time evolution of collisionless shock in counterstreaming laser-produced plasmas.
    Kuramitsu Y; Sakawa Y; Morita T; Gregory CD; Waugh JN; Dono S; Aoki H; Tanji H; Koenig M; Woolsey N; Takabe H
    Phys Rev Lett; 2011 Apr; 106(17):175002. PubMed ID: 21635040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supermagnetosonic jets behind a collisionless quasiparallel shock.
    Hietala H; Laitinen TV; Andréeová K; Vainio R; Vaivads A; Palmroth M; Pulkkinen TI; Koskinen HE; Lucek EA; Rème H
    Phys Rev Lett; 2009 Dec; 103(24):245001. PubMed ID: 20366203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formic acid aggregation in 2D supersonic expansions probed by FTIR imaging.
    Meyer KAE; Suhm MA
    J Chem Phys; 2017 Oct; 147(14):144305. PubMed ID: 29031256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of standing acoustic waves on the formation of laser-induced air plasmas.
    Craig SM; Brownell K; O'Leary B; Malfitano C; Kelley JA
    Appl Spectrosc; 2013 Mar; 67(3):329-34. PubMed ID: 23452498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural evolution and formation of high-pressure plasmas in X pinches.
    Chittenden JP; Ciardi A; Jennings CA; Lebedev SV; Hammer DA; Pikuz SA; Shelkovenko TA
    Phys Rev Lett; 2007 Jan; 98(2):025003. PubMed ID: 17358615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared absorption imaging of 2D supersonic jet expansions: Free expansion, cluster formation, and shock wave patterns.
    Zischang J; Suhm MA
    J Chem Phys; 2013 Jul; 139(2):024201. PubMed ID: 23862934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision velocity measurements of pulsed supersonic jets.
    Christen W; Krause T; Kobin B; Rademann K
    J Phys Chem A; 2011 Jun; 115(25):6997-7004. PubMed ID: 21388109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intense plasma waves at and near the solar wind termination shock.
    Gurnett DA; Kurth WS
    Nature; 2008 Jul; 454(7200):78-80. PubMed ID: 18596804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustered gases as a medium for efficient plasma waveguide generation.
    Milchberg HM; Kim KY; Kumarappan V; Layer BD; Sheng H
    Philos Trans A Math Phys Eng Sci; 2006 Mar; 364(1840):647-61. PubMed ID: 16483955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of ultrasound to enhance high-speed water jet effects.
    Foldyna J; Sitek L; Svehla B; Svehla S
    Ultrason Sonochem; 2004 May; 11(3-4):131-7. PubMed ID: 15081969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.