These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23842403)

  • 21. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.
    Zhu Z; Liu L; Liu Z; Zhang Y; Zhang Y
    Opt Lett; 2017 May; 42(10):1982-1985. PubMed ID: 28504729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber.
    Mafi A; Hofmann P; Salvin CJ; Schülzgen A
    Opt Lett; 2011 Sep; 36(18):3596-8. PubMed ID: 21931402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement.
    Sakamoto A; Saito T
    Rev Sci Instrum; 2012 Jul; 83(7):075107. PubMed ID: 22852724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-numerical-aperture microlensed tip on an air-clad optical fiber.
    Kato S; Chonan S; Aoki T
    Opt Lett; 2014 Feb; 39(4):773-6. PubMed ID: 24562203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of multiple micro-particle trapping--a simulation study.
    Yu Y; Qiu W; Chiu B; Sun L
    Sensors (Basel); 2015 Feb; 15(3):4958-74. PubMed ID: 25734646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Massive photothermal trapping and migration of particles by a tapered optical fiber.
    Xin H; Li X; Li B
    Opt Express; 2011 Aug; 19(18):17065-74. PubMed ID: 21935067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Super-low-power optical trapping of a single nanoparticle.
    Tang X; Zhang Y; Su W; Zhang Y; Liu Z; Yang X; Zhang J; Yang J; Yuan L
    Opt Lett; 2019 Nov; 44(21):5165-5168. PubMed ID: 31674957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particle separation in fluidic flow by optical fiber.
    Lei H; Zhang Y; Li B
    Opt Express; 2012 Jan; 20(2):1292-300. PubMed ID: 22274474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.
    Rong Q; Zhou Y; Yin X; Shao Z; Qiao X
    Biomed Opt Express; 2017 Sep; 8(9):4096-4107. PubMed ID: 28966849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity.
    Gong Y; Zhang C; Liu QF; Wu Y; Wu H; Rao Y; Peng GD
    Opt Express; 2015 Feb; 23(3):3762-9. PubMed ID: 25836228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opto-hydrodynamic tweezers.
    Vasantham S; Kotnala A; Promovych Y; Garstecki P; Derzsi L
    Lab Chip; 2024 Jan; 24(3):517-527. PubMed ID: 38165913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.
    Ti C; Ho-Thanh MT; Wen Q; Liu Y
    Sci Rep; 2017 Oct; 7(1):13168. PubMed ID: 29030571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles.
    Chen J; Kang Z; Kong SK; Ho HP
    Opt Lett; 2015 Sep; 40(17):3926-9. PubMed ID: 26368677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and application of a non-contact double-tapered optical fiber tweezers.
    Liu ZL; Liu YX; Tang Y; Zhang N; Wu FP; Zhang B
    Opt Express; 2017 Sep; 25(19):22480-22489. PubMed ID: 29041557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation.
    Anastasiadi G; Leonard M; Paterson L; Macpherson WN
    Opt Express; 2018 Feb; 26(3):3557-3567. PubMed ID: 29401883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct measurement of optical trapping force gradient on polystyrene microspheres using a carbon nanotube mechanical resonator.
    Yasuda M; Takei K; Arie T; Akita S
    Sci Rep; 2017 Jun; 7(1):2825. PubMed ID: 28588196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photothermal trapping of dielectric particles by optical fiber-ring.
    Xin H; Lei H; Zhang Y; Li X; Li B
    Opt Express; 2011 Jan; 19(3):2711-9. PubMed ID: 21369092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.