These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 23842758)
1. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass. Milano AD; Dodonov M; Onorati F; Menon T; Gottin L; Malerba G; Mazzucco A; Faggian G Interact Cardiovasc Thorac Surg; 2013 Nov; 17(5):811-7. PubMed ID: 23842758 [TBL] [Abstract][Full Text] [Related]
2. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: pulsatile flow versus nonpulsatile flow. Dodonov M; Milano A; Onorati F; Dal Corso B; Menon T; Ferrarini D; Tessari M; Faggian G; Mazzucco A Artif Organs; 2013 Apr; 37(4):357-67. PubMed ID: 23489040 [TBL] [Abstract][Full Text] [Related]
3. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use. Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
5. Pulsatile and nonpulsatile extracorporeal circulation using Capiox E terumo oxygenator: a comparison study with Ultrox and Maxima membrane oxygenators. Minami K; Bairaktaris A; Murray E; Weitkemper H; Dramburg W; Körfer R J Cardiovasc Surg (Torino); 1997 Jun; 38(3):227-32. PubMed ID: 9219471 [TBL] [Abstract][Full Text] [Related]
6. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter. Stehouwer MC; Legg KR; de Vroege R; Kelder JC; Hofman E; de Mol BA; Bruins P Perfusion; 2017 Mar; 32(2):118-125. PubMed ID: 27516417 [TBL] [Abstract][Full Text] [Related]
7. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli. Moroi M; Force M; Wang S; Kunselman AR; Ündar A Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185 [TBL] [Abstract][Full Text] [Related]
8. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles. Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line. Qiu F; Peng S; Kunselman A; Ündar A Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related]
11. Post-arterial filter gaseous microemboli activity of five integral cardiotomy reservoirs during venting: an in vitro study. Myers GJ; Voorhees C; Haynes R; Eke B J Extra Corpor Technol; 2009 Mar; 41(1):20-7. PubMed ID: 19361028 [TBL] [Abstract][Full Text] [Related]
12. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population. Preston TJ; Gomez D; Olshove VF; Phillips A; Galantowicz M J Extra Corpor Technol; 2009 Dec; 41(4):226-30. PubMed ID: 20092077 [TBL] [Abstract][Full Text] [Related]
13. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit. Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248 [TBL] [Abstract][Full Text] [Related]
14. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC. Stanzel RD; Henderson M Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the Maquet Neonatal and Pediatric Quadrox I with an integrated arterial line filter during cardiopulmonary bypass. Melchior RW; Schiavo K; Frey T; Rogers D; Patel J; Chelnik K; Rosenthal T Perfusion; 2012 Sep; 27(5):399-406. PubMed ID: 22717608 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass. Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter. Salavitabar A; Qiu F; Kunselman A; Ündar A Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287 [TBL] [Abstract][Full Text] [Related]
19. Can the oxygenator screen filter reduce gaseous microemboli? Johagen D; Appelblad M; Svenmarker S J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120 [TBL] [Abstract][Full Text] [Related]
20. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model. Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]