These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23843033)

  • 1. Carbon nanotube-based heterostructures for solar energy applications.
    Wang L; Liu H; Konik RM; Misewich JA; Wong SS
    Chem Soc Rev; 2013 Oct; 42(20):8134-56. PubMed ID: 23843033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dot nanoscale heterostructures for solar energy conversion.
    Selinsky RS; Ding Q; Faber MS; Wright JC; Jin S
    Chem Soc Rev; 2013 Apr; 42(7):2963-85. PubMed ID: 23229593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for strong binding of CdSe quantum dots to multiwall carbon nanotubes for solar energy harvesting.
    Azoz S; Jiang J; Keskar G; McEnally C; Alkas A; Ren F; Marinkovic N; Haller GL; Ismail-Beigi S; Pfefferle LD
    Nanoscale; 2013 Aug; 5(15):6893-900. PubMed ID: 23783269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube-nanocrystal heterostructures.
    Peng X; Chen J; Misewich JA; Wong SS
    Chem Soc Rev; 2009 Apr; 38(4):1076-98. PubMed ID: 19421582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion.
    Tada H; Fujishima M; Kobayashi H
    Chem Soc Rev; 2011 Jul; 40(7):4232-43. PubMed ID: 21566829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex templating process in one-dimensional nanoscale: controllable synthesis, macroscopic assemblies, and applications.
    Liang HW; Liu JW; Qian HS; Yu SH
    Acc Chem Res; 2013 Jul; 46(7):1450-61. PubMed ID: 23441891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoengineering coaxial carbon nanotube-dual-polymer heterostructures.
    Stranks SD; Yong CK; Alexander-Webber JA; Weisspfennig C; Johnston MB; Herz LM; Nicholas RJ
    ACS Nano; 2012 Jul; 6(7):6058-66. PubMed ID: 22690755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dot modified multiwall carbon nanotubes.
    Olek M; Büsgen T; Hilgendorff M; Giersig M
    J Phys Chem B; 2006 Jul; 110(26):12901-4. PubMed ID: 16805589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of an asymmetric contacted carbon nanotube for solar-energy harvesting.
    Abdel Rahman H; Kirah K; Ghali H; Anis W
    Appl Opt; 2014 Feb; 53(6):1237-41. PubMed ID: 24663325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.
    Joshi RK; Schneider JJ
    Chem Soc Rev; 2012 Aug; 41(15):5285-312. PubMed ID: 22722888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalization of graphene for efficient energy conversion and storage.
    Dai L
    Acc Chem Res; 2013 Jan; 46(1):31-42. PubMed ID: 23030244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting.
    Jin S; Son HJ; Farha OK; Wiederrecht GP; Hupp JT
    J Am Chem Soc; 2013 Jan; 135(3):955-8. PubMed ID: 23293894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photoresponse of CdS/CMK-3 composite as a candidate for light-harvesting assembly.
    Zhang B; Chen X; Yang J; Yu D; Chen Y; Wu D; Fu R; Zhang M
    Nanotechnology; 2010 Jan; 21(4):045601. PubMed ID: 20009164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.
    Bang JH; Kamat PV
    ACS Nano; 2011 Dec; 5(12):9421-7. PubMed ID: 22107780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube electron sources and applications.
    de Jonge N; Bonard JM
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2239-66. PubMed ID: 15370480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films.
    Li X; Jia Y; Wei J; Zhu H; Wang K; Wu D; Cao A
    ACS Nano; 2010 Apr; 4(4):2142-8. PubMed ID: 20222675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.