These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23843086)

  • 1. Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients.
    Davoudi B; Morrison M; Bizheva K; Yang VX; Dinniwell R; Levin W; Vitkin IA
    J Biomed Opt; 2013 Jul; 18(7):76008. PubMed ID: 23843086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography.
    Wierwille J; Andrews PM; Onozato ML; Jiang J; Cable A; Chen Y
    Lab Invest; 2011 Nov; 91(11):1596-604. PubMed ID: 21808233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation.
    Chan G; Balaratnasingam C; Xu J; Mammo Z; Han S; Mackenzie P; Merkur A; Kirker A; Albiani D; Sarunic MV; Yu DY
    Microvasc Res; 2015 Jul; 100():32-9. PubMed ID: 25917012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical quantitative in-vivo assessment of skin tissue vascularity in radiation-induced fibrosis with optical coherence tomography.
    Demidov V; Zhao X; Demidova O; Pang HYM; Flueraru C; Liu FF; Vitkin IA
    J Biomed Opt; 2018 Oct; 23(10):1-9. PubMed ID: 30315644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy.
    Li H; Standish BA; Mariampillai A; Munce NR; Mao Y; Chiu S; Marcon NE; Wilson BC; Vitkin A; Yang VX
    Lasers Surg Med; 2006 Sep; 38(8):754-61. PubMed ID: 16927368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal angiography with real-time speckle variance optical coherence tomography.
    Xu J; Han S; Balaratnasingam C; Mammo Z; Wong KS; Lee S; Cua M; Young M; Kirker A; Albiani D; Forooghian F; Mackenzie P; Merkur A; Yu DY; Sarunic MV
    Br J Ophthalmol; 2015 Oct; 99(10):1315-9. PubMed ID: 25733527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Noninvasive Assessment of Microvascular Structure and Function in Humans.
    Smith KJ; Argarini R; Carter HH; Quirk BC; Haynes A; Naylor LH; McKirdy H; Kirk RW; McLaughlin RA; Green DJ
    Med Sci Sports Exerc; 2019 Jul; 51(7):1558-1565. PubMed ID: 30688767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying labial blood flow using optical Doppler tomography.
    Otis LL; Piao D; Gibson CW; Zhu Q
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2004 Aug; 98(2):189-94. PubMed ID: 15316546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.
    Xu J; Wong K; Jian Y; Sarunic MV
    J Biomed Opt; 2014 Feb; 19(2):026001. PubMed ID: 24503636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography.
    Maslennikova AV; Sirotkina MA; Moiseev AA; Finagina ES; Ksenofontov SY; Gelikonov GV; Matveev LA; Kiseleva EB; Zaitsev VY; Zagaynova EV; Feldchtein FI; Gladkova ND; Vitkin A
    Sci Rep; 2017 Nov; 7(1):16505. PubMed ID: 29184130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Density Measurements of Radial Peripapillary Capillaries in the Human Retina.
    Yu PK; Balaratnasingam C; Xu J; Morgan WH; Mammo Z; Han S; Mackenzie P; Merkur A; Kirker A; Albiani D; Sarunic MV; Yu DY
    PLoS One; 2015; 10(8):e0135151. PubMed ID: 26252395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus.
    Standish BA; Yang VX; Munce NR; Wong Kee Song LM; Gardiner G; Lin A; Mao YI; Vitkin A; Marcon NE; Wilson BC
    Gastrointest Endosc; 2007 Aug; 66(2):326-33. PubMed ID: 17643708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary dose level classification of tumour microvascular response to radiotherapy using artificial intelligence analysis of optical coherence tomography images.
    Majumdar A; Allam N; Zabel WJ; Demidov V; Flueraru C; Vitkin IA
    Sci Rep; 2022 Aug; 12(1):13995. PubMed ID: 35978040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Comparison of Retinal Capillary Images Derived By Speckle Variance Optical Coherence Tomography With Histology.
    Tan PE; Balaratnasingam C; Xu J; Mammo Z; Han SX; Mackenzie P; Kirker AW; Albiani D; Merkur AB; Sarunic MV; Yu DY
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3989-96. PubMed ID: 26098464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microvascular contrast enhancement in optical coherence tomography using microbubbles.
    Assadi H; Demidov V; Karshafian R; Douplik A; Vitkin IA
    J Biomed Opt; 2016 Jul; 21(7):76014. PubMed ID: 27533242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized speckle variance OCT imaging of microvasculature.
    Mariampillai A; Leung MK; Jarvi M; Standish BA; Lee K; Wilson BC; Vitkin A; Yang VX
    Opt Lett; 2010 Apr; 35(8):1257-9. PubMed ID: 20410985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part ΙΙ): Microvascular network imaging.
    Gao W
    Microcirculation; 2018 Aug; 25(6):e12376. PubMed ID: 28419694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part Ι): Blood flow velocity imaging.
    Gao W
    Microcirculation; 2018 Aug; 25(6):e12375. PubMed ID: 28419622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography.
    Mammo Z; Balaratnasingam C; Yu P; Xu J; Heisler M; Mackenzie P; Merkur A; Kirker A; Albiani D; Freund KB; Sarunic MV; Yu DY
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5074-86. PubMed ID: 26237197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.