These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 23843149)
41. Understanding the molecular basis of MK2-p38α signaling complex assembly: insights into protein-protein interaction by molecular dynamics and free energy studies. Yang Y; Liu H; Yao X Mol Biosyst; 2012 Aug; 8(8):2106-18. PubMed ID: 22648002 [TBL] [Abstract][Full Text] [Related]
43. Structure-based design, synthesis and biological evaluation of N-pyrazole, N'-thiazole urea inhibitors of MAP kinase p38α. Getlik M; Grütter C; Simard JR; Nguyen HD; Robubi A; Aust B; van Otterlo WA; Rauh D Eur J Med Chem; 2012 Feb; 48():1-15. PubMed ID: 22154891 [TBL] [Abstract][Full Text] [Related]
44. Enhanced selectivity profile of pyrazole-urea based DFG-out p38alpha inhibitors. Liu H; Kuhn C; Feru F; Jacques SL; Deshmukh GD; Ye P; Rennie GR; Johnson T; Kazmirski S; Low S; Coli R; Ding YH; Cheng AC; Tecle H; English JM; Stanton R; Wu JC Bioorg Med Chem Lett; 2010 Aug; 20(16):4885-91. PubMed ID: 20620059 [TBL] [Abstract][Full Text] [Related]
45. Contributions of water transfer energy to protein-ligand association and dissociation barriers: Watermap analysis of a series of p38α MAP kinase inhibitors. Pearlstein RA; Sherman W; Abel R Proteins; 2013 Sep; 81(9):1509-26. PubMed ID: 23468227 [TBL] [Abstract][Full Text] [Related]
46. Insights from free-energy calculations: protein conformational equilibrium, driving forces, and ligand-binding modes. Huang YM; Chen W; Potter MJ; Chang CE Biophys J; 2012 Jul; 103(2):342-51. PubMed ID: 22853912 [TBL] [Abstract][Full Text] [Related]
47. Structural basis for the high-affinity binding of pyrrolotriazine inhibitors of p38 MAP kinase. Sack JS; Kish KF; Pokross M; Xie D; Duke GJ; Tredup JA; Kiefer SE; Newitt JA Acta Crystallogr D Biol Crystallogr; 2008 Jul; D64(Pt 7):705-10. PubMed ID: 18566506 [TBL] [Abstract][Full Text] [Related]
48. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Pellegrini E; Palencia A; Braun L; Kapp U; Bougdour A; Belrhali H; Bowler MW; Hakimi MA Structure; 2017 Jan; 25(1):16-26. PubMed ID: 27889209 [TBL] [Abstract][Full Text] [Related]
49. Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases. Comess KM; Sun C; Abad-Zapatero C; Goedken ER; Gum RJ; Borhani DW; Argiriadi M; Groebe DR; Jia Y; Clampit JE; Haasch DL; Smith HT; Wang S; Song D; Coen ML; Cloutier TE; Tang H; Cheng X; Quinn C; Liu B; Xin Z; Liu G; Fry EH; Stoll V; Ng TI; Banach D; Marcotte D; Burns DJ; Calderwood DJ; Hajduk PJ ACS Chem Biol; 2011 Mar; 6(3):234-44. PubMed ID: 21090814 [TBL] [Abstract][Full Text] [Related]
50. Conformational selection vs. induced fit: insights into the binding mechanisms of p38α MAP Kinase inhibitors. Roser P; Weisner J; Stehle J; Rauh D; Drescher M Chem Commun (Camb); 2020 Aug; 56(62):8818-8821. PubMed ID: 32749403 [TBL] [Abstract][Full Text] [Related]
51. Structure-based virtual screening approach to the discovery of p38 MAP kinase inhibitors. Choi H; Park HJ; Shin JC; Ko HS; Lee JK; Lee S; Park H; Hong S Bioorg Med Chem Lett; 2012 Mar; 22(6):2195-9. PubMed ID: 22342625 [TBL] [Abstract][Full Text] [Related]
52. Synthetic phosphorylation of p38α recapitulates protein kinase activity. Chooi KP; Galan SR; Raj R; McCullagh J; Mohammed S; Jones LH; Davis BG J Am Chem Soc; 2014 Feb; 136(5):1698-701. PubMed ID: 24393126 [TBL] [Abstract][Full Text] [Related]
53. Inferential NMR/X-ray-based structure determination of a dibenzo[a,d]cycloheptenone inhibitor-p38α MAP kinase complex in solution. Honndorf VS; Coudevylle N; Laufer S; Becker S; Griesinger C; Habeck M Angew Chem Int Ed Engl; 2012 Mar; 51(10):2359-62. PubMed ID: 22275118 [No Abstract] [Full Text] [Related]
54. Enthalpy-Entropy Compensation in the Promiscuous Interaction of an Intrinsically Disordered Protein with Homologous Protein Partners. Kragelj J; Orand T; Delaforge E; Tengo L; Blackledge M; Palencia A; Jensen MR Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439869 [TBL] [Abstract][Full Text] [Related]
55. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Kloiber K; Weiskirchen R; Kräutler B; Bister K; Konrat R J Mol Biol; 1999 Oct; 292(4):893-908. PubMed ID: 10525413 [TBL] [Abstract][Full Text] [Related]
56. Discovery of 4-(5-(cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a clinical p38α MAP kinase inhibitor for the treatment of inflammatory diseases. Liu C; Lin J; Wrobleski ST; Lin S; Hynes J; Wu H; Dyckman AJ; Li T; Wityak J; Gillooly KM; Pitt S; Shen DR; Zhang RF; McIntyre KW; Salter-Cid L; Shuster DJ; Zhang H; Marathe PH; Doweyko AM; Sack JS; Kiefer SE; Kish KF; Newitt JA; McKinnon M; Dodd JH; Barrish JC; Schieven GL; Leftheris K J Med Chem; 2010 Sep; 53(18):6629-39. PubMed ID: 20804198 [TBL] [Abstract][Full Text] [Related]
57. TAB1 binding induced p38α conformation change: an accelerated molecular dynamics simulation study. Zang Y; Wang H; Kang Y; Zhang J; Li X; Zhang L; Yang Z; Zhang S Phys Chem Chem Phys; 2022 May; 24(17):10506-10513. PubMed ID: 35441632 [TBL] [Abstract][Full Text] [Related]
58. p38alpha MAP kinase C-terminal domain binding pocket characterized by crystallographic and computational analyses. Perry JJ; Harris RM; Moiani D; Olson AJ; Tainer JA J Mol Biol; 2009 Aug; 391(1):1-11. PubMed ID: 19501598 [TBL] [Abstract][Full Text] [Related]
59. CNS-Active p38α MAPK Inhibitors for the Management of Neuroinflammatory Diseases: Medicinal Chemical Properties and Therapeutic Capabilities. Valipour M; Mohammadi M; Valipour H Mol Neurobiol; 2024 Jul; 61(7):3911-3933. PubMed ID: 38041716 [TBL] [Abstract][Full Text] [Related]