These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 23843167)

  • 1. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET Imaging by Laser Scanning Cytometry on Large Populations of Adherent Cells.
    Doan-Xuan QM; Szalóki N; Tóth K; Szöllősi J; Bacso Z; Vámosi G
    Curr Protoc Cytom; 2014 Oct; 70():2.23.1-29. PubMed ID: 25271960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of FRET-positive cells using single 408-nm laser flow cytometry.
    van Wageningen S; Pennings AH; van der Reijden BA; Boezeman JB; de Lange F; Jansen JH
    Cytometry A; 2006 Apr; 69(4):291-8. PubMed ID: 16498686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of intensity-based ratiometric FRET in image cytometry--approaches and a software solution.
    Roszik J; Lisboa D; Szöllosi J; Vereb G
    Cytometry A; 2009 Sep; 75(9):761-7. PubMed ID: 19591240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks.
    Li H; Yu H; Chen T
    Microsc Microanal; 2012 Oct; 18(5):1021-9. PubMed ID: 23026309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fanciful FRET.
    Vogel SS; Thaler C; Koushik SV
    Sci STKE; 2006 Apr; 2006(331):re2. PubMed ID: 16622184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer program for analyzing donor photobleaching FRET image series.
    Szentesi G; Vereb G; Horváth G; Bodnár A; Fábián A; Matkó J; Gáspár R; Damjanovich S; Mátyus L; Jenei A
    Cytometry A; 2005 Oct; 67(2):119-28. PubMed ID: 16163694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy.
    Fazekas Z; Petrás M; Fábián A; Pályi-Krekk Z; Nagy P; Damjanovich S; Vereb G; Szöllosi J
    Cytometry A; 2008 Mar; 73(3):209-19. PubMed ID: 18044751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring FRET in flow cytometry and microscopy.
    Nagy P; Vereb G; Damjanovich S; Mátyus L; Szöllõsi J
    Curr Protoc Cytom; 2006 Nov; Chapter 12():Unit12.8. PubMed ID: 18770834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum likelihood estimation of FRET efficiency and its implications for distortions in pixelwise calculation of FRET in microscopy.
    Nagy P; Szabó A; Váradi T; Kovács T; Batta G; Szöllősi J
    Cytometry A; 2014 Nov; 85(11):942-52. PubMed ID: 25123296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel lambda FRET spectral confocal microscopy imaging method.
    Megías D; Marrero R; Martínez Del Peso B; García MA; Bravo-Cordero JJ; García-Grande A; Santos A; Montoya MC
    Microsc Res Tech; 2009 Jan; 72(1):1-11. PubMed ID: 18785251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.
    Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE
    Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating pharmacological disruption of protein-protein interactions by acceptor photobleaching FRET imaging.
    Roszik J; Tóth G; Szöllősi J; Vereb G
    Methods Mol Biol; 2013; 986():165-78. PubMed ID: 23436412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells.
    Clayton AH; Klonis N; Cody SH; Nice EC
    Eur Biophys J; 2005 Feb; 34(1):82-90. PubMed ID: 15232659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.