These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23843180)
1. Histone- and DNA sequence-dependent stability of nucleosomes studied by single-pair FRET. Tóth K; Böhm V; Sellmann C; Danner M; Hanne J; Berg M; Barz I; Gansen A; Langowski J Cytometry A; 2013 Sep; 83(9):839-46. PubMed ID: 23843180 [TBL] [Abstract][Full Text] [Related]
2. Sequence-dependent nucleosome structure and stability variations detected by Förster resonance energy transfer. Kelbauskas L; Chan N; Bash R; Yodh J; Woodbury N; Lohr D Biochemistry; 2007 Feb; 46(8):2239-48. PubMed ID: 17269656 [TBL] [Abstract][Full Text] [Related]
3. Structural variability of nucleosomes detected by single-pair Förster resonance energy transfer: histone acetylation, sequence variation, and salt effects. Gansen A; Tóth K; Schwarz N; Langowski J J Phys Chem B; 2009 Mar; 113(9):2604-13. PubMed ID: 18950220 [TBL] [Abstract][Full Text] [Related]
4. Nucleosomal stability and dynamics vary significantly when viewed by internal versus terminal labels. Kelbauskas L; Sun J; Woodbury N; Lohr D Biochemistry; 2008 Sep; 47(36):9627-35. PubMed ID: 18702521 [TBL] [Abstract][Full Text] [Related]
5. Nucleosomal arrays can be salt-reconstituted on a single-copy MMTV promoter DNA template: their properties differ in several ways from those of comparable 5S concatameric arrays. Bash R; Wang H; Yodh J; Hager G; Lindsay SM; Lohr D Biochemistry; 2003 Apr; 42(16):4681-90. PubMed ID: 12705831 [TBL] [Abstract][Full Text] [Related]
6. DNA sequence-dependent variation in nucleosome structure, stability, and dynamics detected by a FRET-based analysis. Kelbauskas L; Woodbury N; Lohr D Biochem Cell Biol; 2009 Feb; 87(1):323-35. PubMed ID: 19234544 [TBL] [Abstract][Full Text] [Related]
7. Properties of nucleosomes in acetylated mouse mammary tumor virus versus 5S arrays. Solis FJ; Bash R; Wang H; Yodh J; Lindsay SA; Lohr D Biochemistry; 2007 May; 46(19):5623-34. PubMed ID: 17444617 [TBL] [Abstract][Full Text] [Related]
8. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes. Duggan MM; Thomas JO J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807 [TBL] [Abstract][Full Text] [Related]
9. Trinucleosome compaction studied by fluorescence energy transfer and scanning force microscopy. Bussiek M; Tóth K; Schwarz N; Langowski J Biochemistry; 2006 Sep; 45(36):10838-46. PubMed ID: 16953569 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of the nucleosomal histone H3 N-terminal tail revealed by high precision single-molecule FRET. Lehmann K; Felekyan S; Kühnemuth R; Dimura M; Tóth K; Seidel CAM; Langowski J Nucleic Acids Res; 2020 Feb; 48(3):1551-1571. PubMed ID: 31956896 [TBL] [Abstract][Full Text] [Related]
11. Nucleosome transcription studied in a real-time synchronous system: test of the lexosome model and direct measurement of effects due to histone octamer. Protacio RU; Widom J J Mol Biol; 1996 Mar; 256(3):458-72. PubMed ID: 8604131 [TBL] [Abstract][Full Text] [Related]
12. Single-pair FRET experiments on nucleosome conformational dynamics. Buning R; van Noort J Biochimie; 2010 Dec; 92(12):1729-40. PubMed ID: 20800089 [TBL] [Abstract][Full Text] [Related]
13. Both the 5S rRNA gene and the AT-rich flanks of xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of pol III-type genes in in vitro reconstituted chromatin. Tomaszewski R; Mogielnicka E; Jerzmanowski A Nucleic Acids Res; 1998 Dec; 26(24):5596-601. PubMed ID: 9837988 [TBL] [Abstract][Full Text] [Related]
14. Chromatin compaction at the mononucleosome level. Tóth K; Brun N; Langowski J Biochemistry; 2006 Feb; 45(6):1591-8. PubMed ID: 16460006 [TBL] [Abstract][Full Text] [Related]
15. The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays. Horn PJ; Crowley KA; Carruthers LM; Hansen JC; Peterson CL Nat Struct Biol; 2002 Mar; 9(3):167-71. PubMed ID: 11836537 [TBL] [Abstract][Full Text] [Related]
16. Organization of telomeric nucleosomes: atomic force microscopy imaging and theoretical modeling. Mechelli R; Anselmi C; Cacchione S; De Santis P; Savino M FEBS Lett; 2004 May; 566(1-3):131-5. PubMed ID: 15147882 [TBL] [Abstract][Full Text] [Related]
17. Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z. Hoch DA; Stratton JJ; Gloss LM J Mol Biol; 2007 Aug; 371(4):971-88. PubMed ID: 17597150 [TBL] [Abstract][Full Text] [Related]
18. Sequence-dependent variations associated with H2A/H2B depletion of nucleosomes. Kelbauskas L; Chan N; Bash R; DeBartolo P; Sun J; Woodbury N; Lohr D Biophys J; 2008 Jan; 94(1):147-58. PubMed ID: 17933873 [TBL] [Abstract][Full Text] [Related]
19. Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. Nightingale K; Dimitrov S; Reeves R; Wolffe AP EMBO J; 1996 Feb; 15(3):548-61. PubMed ID: 8599938 [TBL] [Abstract][Full Text] [Related]