BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23843217)

  • 1. Collision-based mechanics of bipedal hopping.
    Gutmann AK; Lee DV; McGowan CP
    Biol Lett; 2013 Aug; 9(4):20130418. PubMed ID: 23843217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic energy storage across speeds during steady-state hopping of desert kangaroo rats (Dipodomys deserti).
    Christensen BA; Lin DC; Schwaner MJ; McGowan CP
    J Exp Biol; 2022 Jan; 225(2):. PubMed ID: 35019972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of the ankle extensor muscle-tendon units and the biomechanical implications for bipedal hopping locomotion in the post-pouch kangaroo Macropus fuliginosus.
    Snelling EP; Biewener AA; Hu Q; Taggart DA; Fuller A; Mitchell D; Maloney SK; Seymour RS
    J Anat; 2017 Dec; 231(6):921-930. PubMed ID: 29034479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanics of jumping versus steady hopping in yellow-footed rock wallabies.
    McGowan CP; Baudinette RV; Usherwood JR; Biewener AA
    J Exp Biol; 2005 Jul; 208(Pt 14):2741-51. PubMed ID: 16000543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic and length-force characteristics of the gastrocnemius of the hopping mouse (Notomys alexis) and the rat (Rattus norvegicus).
    Ettema GJ
    J Exp Biol; 1996 Jun; 199(Pt 6):1277-85. PubMed ID: 8691113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential design for hopping in two species of wallabies.
    McGowan CP; Baudinette RV; Biewener AA
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):151-8. PubMed ID: 16861021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies.
    Biewener AA; Konieczynski DD; Baudinette RV
    J Exp Biol; 1998 Jun; 201(Pt 11):1681-94. PubMed ID: 9576879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 1):41-53. PubMed ID: 15601876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Bipedal Hopping through Computational Evolution.
    Moore JM; Shine CL; McGowan CP; McKinley PK
    Artif Life; 2019; 25(3):236-249. PubMed ID: 31397600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jumping mechanics of desert kangaroo rats.
    Schwaner MJ; Lin DC; McGowan CP
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30420493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping.
    Biewener AA; McGowan C; Card GM; Baudinette RV
    J Exp Biol; 2004 Jan; 207(Pt 2):211-23. PubMed ID: 14668306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion energetics and gait characteristics of a rat-kangaroo, Bettongia penicillata, have some kangaroo-like features.
    Webster KN; Dawson TJ
    J Comp Physiol B; 2003 Sep; 173(7):549-57. PubMed ID: 12905005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kangaroo rat locomotion: design for elastic energy storage or acceleration?
    Biewener AA; Blickhan R
    J Exp Biol; 1988 Nov; 140():243-55. PubMed ID: 3204333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic cost of locomotion in the tammar wallaby.
    Baudinette RV; Snyder GK; Frappell PB
    Am J Physiol; 1992 May; 262(5 Pt 2):R771-8. PubMed ID: 1590472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of proximal muscle function during level versus incline hopping in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2007 Apr; 210(Pt 7):1255-65. PubMed ID: 17371924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of kangaroo astragali: A new angle on the ankle.
    Murphy PJ; Rowe AJ; Rayfield EJ; Janis CM
    J Morphol; 2024 May; 285(5):e21707. PubMed ID: 38721681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional capacity of kangaroo rat hindlimbs: adaptations for locomotor performance.
    Rankin JW; Doney KM; McGowan CP
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 29997260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping.
    McGowan CP; Collins CE
    J Exp Biol; 2018 Jun; 221(Pt 12):. PubMed ID: 29907573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg design in hexapedal runners.
    Full RJ; Blickhan R; Ting LH
    J Exp Biol; 1991 Jul; 158():369-90. PubMed ID: 1919412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A collisional perspective on quadrupedal gait dynamics.
    Lee DV; Bertram JE; Anttonen JT; Ros IG; Harris SL; Biewener AA
    J R Soc Interface; 2011 Oct; 8(63):1480-6. PubMed ID: 21471189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.