BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23843278)

  • 1. Rapid and low-cost prototyping of 3D nanostructures with multi-layer hydrogen silsesquioxane scaffolds.
    Varghese LT; Fan L; Wang J; Xuan Y; Qi M
    Small; 2013 Dec; 9(24):4237-42. PubMed ID: 23843278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.
    Grigorescu AE; Hagen CW
    Nanotechnology; 2009 Jul; 20(29):292001. PubMed ID: 19567961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-voltage-exposure-enabled hydrogen silsesquioxane bilayer-like process for three-dimensional nanofabrication.
    Xiang Q; Chen Y; Wang Y; Zheng M; Li Z; Peng W; Zhou Y; Feng B; Chen Y; Duan H
    Nanotechnology; 2016 Jun; 27(25):254002. PubMed ID: 27175929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing.
    Radtke M; Nelz R; Slablab A; Neu E
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31653033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.
    Vila-Comamala J; Gorelick S; Guzenko VA; Färm E; Ritala M; David C
    Nanotechnology; 2010 Jul; 21(28):285305. PubMed ID: 20562479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for making a single-step etch mask for 3D monolithic nanostructures.
    Grishina DA; Harteveld CA; Woldering LA; Vos WL
    Nanotechnology; 2015 Dec; 26(50):505302. PubMed ID: 26581317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium-Assisted Chemical Etching of Silicon: Enabling CMOS-Compatible 3D Semiconductor Device Nanofabrication.
    Mallavarapu A; Ajay P; Barrera C; Sreenivasan SV
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1169-1177. PubMed ID: 33348977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication scheme of a high resolution and high aspect ratio UV-nanoimprint mold.
    Lim K; Wi JS; Nam SW; Park SY; Lee JJ; Kim KB
    Nanotechnology; 2009 Dec; 20(49):495303. PubMed ID: 19893150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mr-EBL: ultra-high sensitivity negative-tone electron beam resist for highly selective silicon etching and large-scale direct patterning of permanent structures.
    Taal AJ; Rabinowitz J; Shepard KL
    Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33706291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.
    Jung KY; Min BC; Ahn C; Choi GM; Shin IJ; Park SY; Rhie K; Shin KH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6467-70. PubMed ID: 24205685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fabrication of carbon nanostructures using electron beam resist pyrolysis and nanomachining processes for biosensing applications.
    Lee JA; Lee KC; Park SI; Lee SS
    Nanotechnology; 2008 May; 19(21):215302. PubMed ID: 21730570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single crystal-like Si patterns for photonic crystal color filters.
    Cho EH; Kim HS; Sohn JS; Moon CY; Park NC; Park YP
    Nanotechnology; 2011 Apr; 22(13):135301. PubMed ID: 21343641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanometer-scale fabrication of hydrogen silsesquioxane (HSQ) films with post exposure baking.
    Kim DH; Kang SK; Yeom GY; Jang JH
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1918-22. PubMed ID: 23755620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice.
    Hong Y; Zhao D; Liu D; Ma B; Yao G; Li Q; Han A; Qiu M
    Nano Lett; 2018 Aug; 18(8):5036-5041. PubMed ID: 29940114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-layer templated assembly of silica at the nanoscale.
    Hinestrosa JP; Sutton JE; Allison DP; Doktycz MJ; Messman JM; Retterer ST
    Langmuir; 2013 Feb; 29(7):2193-9. PubMed ID: 23360298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional etching of silicon for the fabrication of low-dimensional and suspended devices.
    Walavalkar SS; Homyk AP; Henry MD; Scherer A
    Nanoscale; 2013 Feb; 5(3):927-31. PubMed ID: 23292113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays.
    Huang Y; Pandraud G; Sarro PM
    Nanotechnology; 2012 Dec; 23(48):485306. PubMed ID: 23128935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.