BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23843279)

  • 1. Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance.
    Su D; Wang C; Ahn HJ; Wang G
    Chemistry; 2013 Aug; 19(33):10884-9. PubMed ID: 23843279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries.
    Su D; Wang G
    ACS Nano; 2013 Dec; 7(12):11218-26. PubMed ID: 24206168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries.
    Su D; Wang C; Ahn H; Wang G
    Phys Chem Chem Phys; 2013 Aug; 15(30):12543-50. PubMed ID: 23793542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical mesoporous SnO microspheres as high capacity anode materials for sodium-ion batteries.
    Su D; Xie X; Wang G
    Chemistry; 2014 Mar; 20(11):3192-7. PubMed ID: 24522961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries.
    Xie X; Su D; Chen S; Zhang J; Dou S; Wang G
    Chem Asian J; 2014 Jun; 9(6):1611-7. PubMed ID: 24729583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-NaMnO2: a high-performance cathode for sodium-ion batteries.
    Billaud J; Clément RJ; Armstrong AR; Canales-Vázquez J; Rozier P; Grey CP; Bruce PG
    J Am Chem Soc; 2014 Dec; 136(49):17243-8. PubMed ID: 25397400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin δ-MnO
    Peng H; Fan H; Yang C; Tian Y; Wang C; Sui J
    RSC Adv; 2020 May; 10(30):17702-17712. PubMed ID: 35515586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates.
    Wang W; Yu C; Lin Z; Hou J; Zhu H; Jiao S
    Nanoscale; 2013 Jan; 5(2):594-9. PubMed ID: 23203161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries.
    Cheng F; Zhao J; Song W; Li C; Ma H; Chen J; Shen P
    Inorg Chem; 2006 Mar; 45(5):2038-44. PubMed ID: 16499364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.
    Shakoor RA; Park CS; Raja AA; Shin J; Kahraman R
    Phys Chem Chem Phys; 2016 Feb; 18(5):3929-35. PubMed ID: 26765283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of a MnO2 cathode by water-stimulated Mg(2+) insertion for a magnesium ion battery.
    Song J; Noked M; Gillette E; Duay J; Rubloff G; Lee SB
    Phys Chem Chem Phys; 2015 Feb; 17(7):5256-64. PubMed ID: 25608277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical and structural study of layered P2-type Na(2/3)Ni(1/3)Mn(2/3)O2 as cathode material for sodium-ion battery.
    Wen Y; Wang B; Zeng G; Nogita K; Ye D; Wang L
    Chem Asian J; 2015 Mar; 10(3):661-6. PubMed ID: 25641817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WS₂@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances.
    Su D; Dou S; Wang G
    Chem Commun (Camb); 2014 Apr; 50(32):4192-5. PubMed ID: 24622992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode.
    Weng YT; Huang TY; Lim CH; Shao PS; Hy S; Kuo CY; Cheng JH; Hwang BJ; Lee JF; Wu NL
    Nanoscale; 2015 Dec; 7(47):20075-81. PubMed ID: 26567463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery.
    Li J; Yao R; Cao C
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5075-82. PubMed ID: 24625317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemically stable tunnel-type α-MnO
    De Luna Y; Alsulaiti A; Ahmad MI; Nimir H; Bensalah N
    Front Chem; 2023; 11():1101459. PubMed ID: 36762193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.
    Shen W; Wang C; Liu H; Yang W
    Chemistry; 2013 Oct; 19(43):14712-8. PubMed ID: 24014393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.