BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23843330)

  • 21. Detection of cerebral NAD
    de Graaf RA; De Feyter HM; Brown PB; Nixon TW; Rothman DL; Behar KL
    Magn Reson Med; 2017 Sep; 78(3):828-835. PubMed ID: 27670385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for NADH/NAD+ redox sensing by a Rex family repressor.
    McLaughlin KJ; Strain-Damerell CM; Xie K; Brekasis D; Soares AS; Paget MS; Kielkopf CL
    Mol Cell; 2010 May; 38(4):563-75. PubMed ID: 20513431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy metabolism and NAD-NADH redox state in brain slices in response to glutamate exposure and ischemia.
    Kannurpatti SS; Joshi NB
    Metab Brain Dis; 1999 Mar; 14(1):33-43. PubMed ID: 10348312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can we use 1H MRS shimming values to obtain 31P spectra?
    Wu RH; Guo G; Zhang YP; Tran H; terBrugge K; Mikulis D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1873-6. PubMed ID: 17946076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic control by sirtuins and other enzymes that sense NAD
    Anderson KA; Madsen AS; Olsen CA; Hirschey MD
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):991-998. PubMed ID: 28947253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.
    Zhao Y; Wang A; Zou Y; Su N; Loscalzo J; Yang Y
    Nat Protoc; 2016 Aug; 11(8):1345-59. PubMed ID: 27362337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circadian Oscillations of NADH Redox State Using a Heterologous Metabolic Sensor in Mammalian Cells.
    Huang G; Zhang Y; Shan Y; Yang S; Chelliah Y; Wang H; Takahashi JS
    J Biol Chem; 2016 Nov; 291(46):23906-23914. PubMed ID: 27645993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of acute arterial hypo- and hypertension on cerebrocortical NAD/NADH redox state and vascular volume.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1982; 2(2):209-19. PubMed ID: 7076733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain oxidative metabolism of the newborn dog: correlation between 31P NMR spectroscopy and pyridine nucleotide redox state.
    Mayevsky A; Nioka S; Subramanian VH; Chance B
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):201-7. PubMed ID: 3343295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. (31)P-MRS using visual stimulation protocols with different durations in healthy young adult subjects.
    Barreto FR; Costa TB; Landim RC; Castellano G; Salmon CE
    Neurochem Res; 2014 Dec; 39(12):2343-50. PubMed ID: 25227748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants.
    Zhang Y; Krahnert I; Bolze A; Gibon Y; Fernie AR
    Curr Protoc Plant Biol; 2020 Sep; 5(3):e20115. PubMed ID: 32841544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Regulatory NADH/NAD+ Redox Biosensor for Bacteria.
    Liu Y; Landick R; Raman S
    ACS Synth Biol; 2019 Feb; 8(2):264-273. PubMed ID: 30633862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology.
    Ishima T; Kimura N; Kobayashi M; Nagai R; Osaka H; Aizawa K
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of topically administered epinephrine, norepinephrine, and acetylcholine on cerebrocortical circulation and the NAD/NADH redox state.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):161-9. PubMed ID: 6841463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time assessment of the metabolic profile of living cells with genetically encoded NADH sensors.
    Zhao Y; Yang Y; Loscalzo J
    Methods Enzymol; 2014; 542():349-67. PubMed ID: 24862275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.