These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23843436)

  • 1. Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates.
    Evans RC; Maniar YM; Blackwell KT
    J Neurophysiol; 2013 Oct; 110(7):1631-45. PubMed ID: 23843436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.
    Jędrzejewska-Szmek J; Damodaran S; Dorman DB; Blackwell KT
    Eur J Neurosci; 2017 Apr; 45(8):1044-1056. PubMed ID: 27233469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action potential timing determines dendritic calcium during striatal up-states.
    Kerr JN; Plenz D
    J Neurosci; 2004 Jan; 24(4):877-85. PubMed ID: 14749432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ca(2+) threshold for induction of spike-timing-dependent depression in the mouse striatum.
    Shindou T; Ochi-Shindou M; Wickens JR
    J Neurosci; 2011 Sep; 31(36):13015-22. PubMed ID: 21900580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons.
    Carter AG; Sabatini BL
    Neuron; 2004 Oct; 44(3):483-93. PubMed ID: 15504328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons.
    Evans RC; Morera-Herreras T; Cui Y; Du K; Sheehan T; Kotaleski JH; Venance L; Blackwell KT
    PLoS Comput Biol; 2012; 8(4):e1002493. PubMed ID: 22536151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-dependent inactivation of calcium channels in the medial striatum increases at eye opening.
    Evans RC; Herin GA; Hawes SL; Blackwell KT
    J Neurophysiol; 2015 Apr; 113(7):2979-86. PubMed ID: 25673739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of dendritic calcium release in striatal spiny projection neurons.
    Plotkin JL; Shen W; Rafalovich I; Sebel LE; Day M; Chan CS; Surmeier DJ
    J Neurophysiol; 2013 Nov; 110(10):2325-36. PubMed ID: 23966676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts.
    Kampa BM; Stuart GJ
    J Neurosci; 2006 Jul; 26(28):7424-32. PubMed ID: 16837590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels.
    Van Goor F; Krsmanovic LZ; Catt KJ; Stojilkovic SS
    Mol Endocrinol; 1999 Apr; 13(4):587-603. PubMed ID: 10194765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiation of Ca2+ influx through NMDA channels by action potentials: a computer model.
    Neville KR; Lytton WW
    Neuroreport; 1999 Nov; 10(17):3711-6. PubMed ID: 10619671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic calcium encodes striatal neuron output during up-states.
    Kerr JN; Plenz D
    J Neurosci; 2002 Mar; 22(5):1499-512. PubMed ID: 11880480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity.
    Kampa BM; Letzkus JJ; Stuart GJ
    J Physiol; 2006 Jul; 574(Pt 1):283-90. PubMed ID: 16675489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent calcium decay explains STDP in a dynamic model of hippocampal synapses.
    Standage D; Trappenberg T; Blohm G
    PLoS One; 2014; 9(1):e86248. PubMed ID: 24465987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local mechanisms of phase-dependent postsynaptic modifications of NMDA-induced oscillations in the abducens motoneurons: a simulation study.
    Kopysova IL; Korogod SM; Durand J; Tyc-Dumont S
    J Neurophysiol; 1996 Aug; 76(2):1015-24. PubMed ID: 8871216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression.
    Zhou YD; Acker CD; Netoff TI; Sen K; White JA
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19121-5. PubMed ID: 16365307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron.
    Moyer JT; Wolf JA; Finkel LH
    J Neurophysiol; 2007 Dec; 98(6):3731-48. PubMed ID: 17913980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.